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Summary

This study focuses on important aspects concerning gravity field processing of future Low-Low Satellite-

to-Satellite Tracking (LL-SST) satellite missions. Closed-loop simulations taking into account error

models of new generation instrument technology are used to estimate the gravity field accuracy that

future missions could provide. Limiting factors are identified, and methods for their treatment are de-

veloped. The contribution of all error sources to the error budget is analyzed. It is shown that gravity

field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of

a laser interferometer. An enhanced numerical precision processing scheme is proposed instead, where

double and quadruple precision is used in different parts of the processing chain. It is demonstrated that

processing with enhanced precision can efficiently handle laser measurements and take full advantage of

their accuracy, while keeping the computational times within reasonable levels. However, error sources

of considerably larger impact are expected to affect future missions, with the accelerometer instrument

noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise

such as the one present in accelerometer measurements, can be efficiently handled by frequency de-

pendent data weighting. Residual time series that contain the effect of system errors and propagated

accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties.

The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the

weight matrix to a noise case considering all error sources leads to reduction of the error level over the

complete spectral bandwidth. Co-estimation of empirical accelerations does not show the same efficiency

in reducing the propagated noise with the applied processing strategy. Temporal aliasing effects are re-

duced essentially by adding a second pair of satellites at an inclined orbit. Compared to a GRACE-type

near-polar pair, such a Bender-type constellation delivers solutions with major improvements in terms of

de-aliasing potential and recovery performance. When the integrated effect of all geophysical processes

is recovered, the maximum spatial resolution of 11-day solutions can be increased from 715 to 315 km

half-wavelength. A further reduction of temporal aliasing errors is possible by co-parameterizing low

resolution gravity fields at short time intervals, together with the higher resolution gravity field which is

sampled at a longer time interval. One day was found to be the optimal sampling period for reducing

the error levels in the solutions. A uniform sampling at the co-parameterized short periods, is a prereq-

uisite for an efficient reduction of aliasing errors. High frequency atmospheric signals are captured by

daily solutions to a large extent. Hence co-parameterization at daily basis results in significant reduction
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of aliasing caused by their under-sampling. This enables future gravity satellite missions to deliver the

complete spectrum of Earth’s geophysical processes. The corresponding by-products of daily gravity

field solutions are expected to be very useful to atmospheric science and open doors to new fields of

application.



Zusammenfassung

Diese Doktorarbeit befasst sich schwerpunktmäßig mit der Schwerefeldprozessierung zukünftiger Low-

Low Satellite-to-Satellite (LL-SST) Satellitenmissionen. Um die Genauigkeit zukünftiger Satellitenmis-

sionen abzuschätzen, wurden Closed-loop Simulationen unter Einbeziehung von Fehlermodellen neuer

Instrumentengenerationen durchgeführt. Einschränkende Faktoren werden erörtert und entsprechende

Lösungansätze entwickelt. Der Beitrag aller Fehlerquellen zum gesamten Fehlerbudget wird quan-

tifiziert. Es wird nachgewiesen, dass die Schwerefeldprozessierung mit doppelter Rechengenauigkeit

ein limitierender Faktor für die Ausschöpfung der nm-Messgenauigkeit eines Laserinterferometers sein

kann. Ein alternatives Prozessierungsschema erhöhter Rechengenauigkeit wird stattdessen vorgeschla-

gen, in dem doppelte und vierfache Rechengenauigkeit in verschiedenen Prozessierungsschnritten

verwendet wird. Es wird demonstriert, dass in diesem Fall Laserbeobachtungen mittels erhöhter

Genauigkeit wirkungsvoll prozessiert werden können und deren Präzision voll ausgenutzt werden kann.

Gleichzeitig bleibt der Rechenaufwand in angemessenen Grenzen. Allderdings, werden sich voraus-

sichtlich andere Fehlerquellen stärker auf zukünftige Satellitenmissionen auswirken. Das Rauschen der

Beschleunigungsmesser und die Effekte von zeitlichem Aliasing stellen die beiden größten Fehlerquellen

dar. Fehler infolge von zeitkorreliertem Rauschen, wie z.B. in den Beobachtungen der Beschleu-

nigungsmesser, können wirkungsvoll mittels frequenzabhängiger Datengewichtung behandelt werden.

Eine Zeitreihe von Residuen, die den Effekt vom Systemrauschen, propagiertem Beschleunigungsmess-

rauschen und Laserrauschen beinhaltet, werden als Rauschrealisierung mit stationären stochastischen

Eigenschaften berücksichtigt. Basierend darauf wird die Gewichtungsmatrix durch Autokorrelationfunk-

tionen erstellt. Die Einbeziehung der Gewichtungsmatrix in einem Fall, der alle Fehlerquellen betrachtet,

führt zur Reduzierung des Fehlerniveaus über das gesamte Spektrum. Dagegen führt das Mitschätzen

von empirischen Beschleunigungen nicht zu derselben gleichmässigen Reduzierung von Fehlern. Effekte

von zeitlichem Aliasing reduzieren sich wesentlich durch die Erweiterung um ein zweites Satellitenpaar

mit inklinierter Bahn. Im Vergleich zu einem GRACE-ähnichen Paar mit fast polarer Bahn liefert eine

solche Bender Konstellation verbesserte Ergebnisse hinsichtlich der Reduzierung von Aliasingeffekten

und erzielbarer Genauigkeit. Wenn eine integrierte Wirkung aller geophysikalischer Prozesse betra-

chtet wird, kann sich die maximale räumliche Auflösung einer 11-tägigen Lösung von 715 auf 315

km halbe Wellenlänge steigern. Eine weitere Reduzierung der zeitlichen Aliasing-Effekte ist möglich

durch Mitschätzung von niedrig aufgelösten Schwerfeldlösungen über kurze Zeitspannen, zusammen
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mit der hoch aufgelösten Schwerfeldlösung, die über eine längere Zeitspanne abgetastet wird. Der

optimale Abtastzeitraum für kurze Zeitspannen zur Reduzierung des Fehlerniveaus beträgt einen Tag.

Ein einheitliches Abtasten innerhalb der kurzer Zeitspannen ist eine Voraussetzung für eine effektive

Reduzierung der Aliasingfehlern. Hochfrequente Signale der Atmosphäre können in großem Maß aus

täglicher Parametrisierung erfasst werden. Somit führt die Co-Parametrisierung in täglichen Zeitspan-

nen zu einer signifikantent Reduzierung der Aliasingfehler. Das ermöglicht zukünftigen Satellitenmis-

sionen, das ganze Spektrum von geophysikalischen Prozessen der Erde zu erfassen. Die entsprechen-

den täglichen Schwerefeldlösungen stellen zusätzliche Produkte dar, die nützlich für die Atmosphären-

forschung sein konnen. Damit öffnen sich Perspektiven für gänzlich neue Anwendungen.
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Chapter 1

Introduction

1.1 Background

Earth is a living planet that is subject to substantial changes due to processes and interactions between its

geophysical sub-systems; namely the atmosphere, hydrosphere, biosphere and geosphere. A significant

amount of these processes is related to mass redistribution in the Earth system and thus is translated into

changes of the gravity field of the Earth. Knowledge about Earth’s gravity field properties is therefore

fundamental for many applications of Earth sciences. Gravity measurements contribute to the computa-

tion of geoid models used for regional height reference systems, thus allowing the combination of Global

Positioning System (GPS) with classical leveling techniques. Global satellite observations are used for

the computation of a global geoid model, with the ambitions to unify regional height systems into a

global reference system, hence making local or continental height systems comparable. Geoid models

are also very useful in the field of oceanography, where geoid heights are subtracted from sea surface

heights (measured by satellite altimetry), to deliver the sea surface topography. The latter is used in ocean

circulation modeling, which is the basis for understanding the global heat balance. Knowledge of Earth’s

gravity field is therefore implicitly a very valuable input for the computation of global climate models.

Moreover, temporal gravity field changes are used to quantify changes in the global water balance, such

as the polar ice cap melting, mean sea level change and seasonal changes in the water balance of large

river basins. Global gravity observations contribute to the computation of hydrological, glaciological and

Glacial Isostatic Adjustment (GIA) models. Finally, geophysical and geodynamical models used in solid

Earth applications are improved from gravity field information. These models are very useful for a better

interpretation of seismic events, volcanic processes and plate tectonics, as well as for the exploration of

natural resources.

Space observations provide the only means to monitor and assess changes of Earth’s sub-systems on a

global and long-term perspective. They deliver long and continuous time series of important Earth system

parameters, which contribute to the analysis and prediction of these changes. Mass distribution and

transport processes in the Earth system consist mainly of dynamic processes in cryosphere, continental
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hydrology, ocean, atmosphere and solid Earth. At the end of the 20th century, tracking data from satellite

missions using various observation techniques (e.g. SLR, Doppler, PRARE, Doris or GPS) have been

used to improve our knowledge on Earth’s gravity field. In 2000, the era of dedicated geopotential

missions began with the launch of the Challenging Minisatellite Payload (CHAMP) (ended in 2010)

(Reigber, 1995). The Gravity Recovery and Climate Experiment (GRACE) (2002∼present) (Tapley

et al., 2004) and the Gravity field and steady-state Ocean Circulation Explorer (GOCE) (2009∼2013)

(Rummel et al., 2011) dedicated gravity missions that followed, resulted in remarkable improvements

in the knowledge of Earth’s time-varying and static gravity field, respectively. The great success of

GRACE in mapping Earth’s mass changes, established its products applicable to a large spectrum of

Earth sciences. The continuity of the time-varying gravity field time series, is enabled by the upcoming

launch (August 2017) of GRACE’s successor, namely the GRACE Follow-On (GRACE-FO) mission

(Flechtner et al., 2014a). GRACE-FO is a gap-filling mission that will cover the timespan between

GRACE and Next Generation Gravity Missions (NGGMs) to be launched in the mid-term future (after

2020).

1.2 Motivation and objectives of this study

Dedicated gravity missions delivering observations for a period longer than 15 years, have left a pre-

cious heritage for studies of future satellite mission designs. The employment of different measuring

techniques such as High-Low Satellite-to-Satellite Tracking (HL-SST), LL-SST and gravitational gra-

diometry, have been extensively investigated for their ability to improve specific properties of the static

and time-varying part of Earth’s gravity field. Analysis of the on-board sensor data led to assessment of

their quality and estimation of their contribution to the gravity field error budget. Investigations concern-

ing orbit design pointed out physical constraints caused by insufficient sampling. The aforementioned

limitations constitute important lessons learnt from the dedicated gravity missions. These lessons, to-

gether with the needs and requirements of the scientific community, establish a solid background for

mission design of NGGMs.

Main subject of this study is the gravity field processing of future LL-SST satellite missions. New

generation instrument technology is expected to deliver measurements of substantially higher accuracy

compared to the ones derived from current sensors. Key instrument of LL-SST missions is the inter-

satellite ranging unit, which enables the detection of mass changes taking place below the satellites’

orbital altitude. Laser interferometry is planned to substitute the K-Band Ranging (KBR) technology

used so far in GRACE mission for the inter-satellite ranging. This will improve the measuring accuracy

from µm to nm level, and raise potential for big improvements in terms of spatial resolution. However,

this level of accuracy has to be contemplated with the noise levels from other error sources and limita-

tions concerning processing accuracy. So far, gravity field processing accuracy has always been below

the noise levels of observations. Advances in metrology of sensors such as the inter-satellite ranging

instrument, may raise the demands for processing accuracy. In this study, we carefully address these
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questions and propose solutions to the problems encountered.

The quantification of the contribution of all error sources to the error budget is a very important task

for designing NGGMs. Comprehending the way each noise source propagates into the error spectrum,

plays an important role for their effective treatment. In the frames of this study, we perform assessment

of their contribution, and give special attention to the specific bandwidth part of the error spectrum each

noise source is influencing. We develop methods for reducing the effect of error sources at the level of

gravity field processing. Those methods are then applied for NGGMs of in-line GRACE-type formation,

as well as for novel mission designs that constitute a constellation of satellites. It is also investigated, in

which way the addition of a second pair of satellites improves the system’s isotropy, and contributes to

the reduction of temporal aliasing effects. The latter remains nevertheless one of the biggest contributors

to the error budget of NGGMs. When using two pairs of satellites, temporal and spatial resolution are

increased. That makes high frequency gravity field information taking place on large scales, easier to be

retrieved. A further reduction of temporal aliasing effects is possible, when this information is taken into

account and is properly assigned to the averaged solution. This leads to a gravity field approach with a

wide spectrum of parameterization possibilities. This approach was implemented and investigated in this

study, in the framework of a European Space Agency (ESA)-funded project with the name “Assessment

of Satellite Constellations for Monitoring the Variations in Earth Gravity Field - SC4MGV” (Iran Pour

et al., 2015). The spectrum of choices is explored and their effect is individually investigated. Possible

relations between orbit design choices and the effectiveness of this method are also investigated, and

recommendations on optimal parameterization choices are given. Finally, the relative improvements of

solutions from such a NGGM compared to the state-of-the-art missions are discussed.

1.3 Outline

Chapter 2 gives the theoretical background for determining Earth’s gravity field from satellite obser-

vations. It also presents the mission details of dedicated gravity satellite missions of the past and the

present, and concludes by discussing concepts for future missions. Chapter 3 gives an overview of the

simulation environment for the gravity field recovery. At first, the coordinate and time systems used are

described. As a next step, the method for orbit simulation and the mathematical description of the func-

tional model are presented. Finally, the formulation and solution of the system are described. Chapter

4 starts with an overview of the orbit designs for present and future gravity satellite missions. A brief

discussion on science and mission requirements for future missions follows. Next, the noise models for

the instrument performance used in the simulations are given, and results of closed-loop simulations for

the error-budget analysis are presented. Chapter 5 reports the limitations when processing with standard

accuracy, and investigates the use of enhanced accuracy in the gravity field processing chain. Chapter 6

presents the investigated methods of noise reduction, and analyzes their effect in gravity field processing

at the presence of all noise sources. Chapter 7 deals with the treatment of temporal aliasing effects for

NGGMs. Finally, Chapter 8 gives the conclusions of this study.





Chapter 2

Earth’s gravity field determination from

satellite observations

This chapter is dedicated to the description of the space methods that are used to determine features of the

gravity field and the figure of the Earth. At first, the perturbing forces acting on a satellite are reviewed.

As a next step, an overview of the dedicated gravity satellite missions of the past and the present is given.

Finally, the state-of-the-art plans and challenges for NGGMs are presented.

2.1 Perturbing forces acting on a satellite

A near-earth artificial satellite flies around the Earth with an orbit that is slightly perturbed from its ideal

Kepler motion. In case of a perturbed motion, the equation of motion takes the form of an inhomogeneous

differential equation of second order:

r̈+
GME

r3
r = dr̈, (2.1)

where G is the Newtonian gravitational constant, ME is the Earth’s total mass and r/r denotes a unit

vector pointing from the center of the Earth to the satellite. For the analytical solution of Eq. (2.1), per-

turbation theory may be applied, where initially the homogeneous part of Eq. (2.1) is considered, leading

to a Keplerian orbit. Each disturbing acceleration dr̈ causes temporal variations in the orbital parameters

that lead to an osculating ellipse which deviates from the Keplerian orbit. Those deviations are caused by

perturbing forces that act on the satellite and are categorized into gravitational (or conservative) and non-

gravitational (or non-conservative) forces. The gravitational forces are by far the strongest and mainly

determine the satellite’s orbit. They are induced by the gravitational attraction of the non-spherical part

of Earth’s gravity field and other celestial bodies (e.g. Sun, Moon and other planets) as well as tides

(ocean, solid Earth, pole and third bodies). Non-gravitational forces include thrust forces, atmospheric

drag, solar radiation pressure and Earth’s reflected radiation (Earth albedo).
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2.1.1 Earth’s gravitational field

Newton’s law of gravitation describes the attraction of two points with masses m1 and m2 separated by a

distance l:

F = G
m1 ·m2

l2
, (2.2)

where G is the Newtonian gravitational constant in Système International d’unités (SI) units:

G = 6.6743 ·m3kg−1s−2 . (2.3)

The gravitational field can be studied by calling one mass the attracting mass and the other the attracted

mass. For simplicity the attracted mass is set equal to unity and the attracting mass is denoted by m. The

gravitational force will then be equal to:

F = G
m

l2
. (2.4)

In geodesy we are considering the attraction of systems of point masses or of solid bodies. Thus it is

easier to deal with a function such as the potential of gravitation, which is related to the force function in

vector notation as

F = grad(V ) (2.5)

Assuming that the point masses are distributed continuously over a volume υ with density ρ, the potential

can be given by Newton’s integral

V = G

$

υ

ρ

l
dυ (2.6)

Outside the attracting masses, the density ρ is zero and the Laplace equation is satisfied:

∆V = 0 (2.7)

where the symbol ∆ is the so-called Laplacian operator. The solutions of Eq. (2.7) are called harmonic

functions. Thus, the gravitational potential outside the Earth is also a harmonic function, whose solution

is given by the sum of the surface spherical harmonics Yn (Hofmann-Wellenhof and Moritz, 2006):

V =

∞
∑

n=0

Yn(θ, λ)

rn+1
(2.8)

where r (radius vector), θ (polar distance) and λ (geocentric longitude) represent the spherical coordi-

nates. The Laplace’s differential equation for surface spherical harmonics has solutions given by the

following functions:

Y c
nm(θ, λ) = Pnm(cosθ)cosmλ and Y s

nm(θ, λ) = Pnm(cosθ)sinmλ , (2.9)
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where Pnm(cosθ) is the Legendre function. Due to the linearity of those solutions, their combination will

also be a solution that delivers the general expression for the surface spherical harmonics Yn:

Yn(θ, λ) =
n

∑

m=0

(anmcosmλ + bnmcosmλ)Pnm(cosθ) (2.10)

where anm and bnm are arbitrary constants. Substituting Eq. (2.10) to Eq. (2.8), the gravitational potential

can be derived as an arbitrary function f (θ, λ) which is expanded into a series of surface spherical

harmonics on the surface of the sphere:

f (θ, λ) = V =

∞
∑

n=0

Yn(θ, λ)

rn+1
=

∞
∑

n=0

1

rn+1

n
∑

m=0

(anmcosmλ + bnmcosmλ)Pnm(cosθ), (2.11)

Earth related applications benefit from the properties of spherical harmonics, when they are represented

as an orthogonal set of solutions to the Laplace equation. The orthogonality property allows for a for-

ward and inverse transform of a function to its spectrum. This is a reason why gravity field functionals

are formulated in terms of spherical harmonic coefficients. Using the orthogonality properties of the

functions included in (2.11):

Rnm =Pnm(cosθ)cosmλ, (2.12)

Snm =Pnm(cosθ)sinmλ,

the equations for the constant coefficients anm and bnm can be derived:

an0 =
2n+1

4π

"

σ

f (θ, λ)Pn(cosθ)dσ;

anm =
2n+1

2π
(n−m)!
(n+m)!

"

σ

f (θ, λ)Rnm(θ, λ)dσ

bnm =
2n+1

2π
(n−m)!
(n+m)!

"

σ

f (θ, λ)Snm(θ, λ)dσ







































(m , 0). (2.13)

In connection with satellite dynamics, Eq. (2.11) is often written in a form where the gravitational

potential outside the Earth is expressed (Hofmann-Wellenhof and Moritz, 2006):

V (r, θ , λ) =
GME

r















1+
∞
∑

n=1

n
∑

m=0

(

RE

r

)n

[CnmRnm(θ, λ)+ SnmSnm(θ, λ)]















, (2.14)
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where RE is the mean equatorial radius of the Earth, so that it satisfies:

Cnm =
1

GM Rn
E

Anm

Snm =
1

GM Rn
E

Bnm































(m , 0). (2.15)

The Anm and Bnm coefficients can be determined from the boundary values of gravity at the Earth’s

surface:

An0 = G

$

earth

r
′nPn(cosθ

′
)dM;

Anm = 2
(n−m)!
(n+m)!

G

$

earth

r
′nRnm(θ

′
, λ
′
)dM

Bnm = 2
(n−m)!
(n+m)!

G

$

earth

r
′nSnm(θ

′
, λ
′
)dM







































(m , 0), (2.16)

where (r
′
, θ
′
, λ
′
) are the spherical coordinates of a mass element dM inside Earth and (r, θ , λ) of a point

at which the potential is to be determined. The conventional harmonics Rnm and Snm can be replaced by

other functions which are easier to handle, namely the fully normalized harmonics Rnm and Snm given

by (Hofmann-Wellenhof and Moritz, 2006):

Rn0(θ, λ) =
√

2n+1Rn0(θ, λ) ≡
√

2n+1Pn(cosθ);

Rnm(θ, λ) =

√

2(2n+1)
(n−m)!
(n+m)!

Rnm(θ, λ)

Snm(θ, λ) =

√

2(2n+1)
(n−m)!
(n+m)!

Snm(θ, λ)











































(m , 0). (2.17)

Similarly the corresponding fully normalized coefficients will be given by:

Cn0 =
1

√
2n+1

Cn0;



2.1 Perturbing forces acting on a satellite 9

Cnm =

√

(n+m)!
2(2n+1)(n−m)!

Cnm

Snm =

√

(n+m)!
2(2n+1)(n−m)!

Snm











































(m , 0). (2.18)

From a geometrical representation point of view, the spherical harmonics can be divided to zonal,

tesseral and sectorial harmonics. Zonal are the harmonics with order equal to zero (m = 0), leading to an

independence on longitude λ. The harmonics with equal degree and order (m = n) are called sectorial

harmonics and do not depend on latitude φ. All other harmonics have m , 0 and m , n, are latitude

and longitude dependent and are called tesseral harmonics. Zonal harmonics effect the satellite orbits

to a much greater extent than tesseral harmonics, by influencing mostly the secular and long-periodic

perturbations of the satellite’s orbital elements a, e, i, e.t.c. Therefore, long observation periods with

several satellite revolutions are needed in order to detect their influence in changes of orbital parameters.

On the other hand, the perturbations due to tesseral harmonics lead to much shorter periods.

The very first spherical harmonic coefficients are of particular interest in geodesy. With Eq. (2.16)

one can compute the zero-degree term Anm:

A00 = G

$

Earth

dM = GME , (2.19)

which produces a zero-degree component of the geopotential V00 being nothing else than the gravitational

potential of a point mass equal to the total mass of the Earth. Accordingly, the first-degree coefficients

yield:

A10 = G

$

Earth

z
′
dM, A11 = G

$

Earth

x
′
dM, B11 = G

$

Earth

y
′
dM . (2.20)

Those three first-degree coefficients will be equal to zero if the origin of the used coordinate system

coincides with the geocenter. In that case, the center of mass of the Earth coincides with the center of the

Figure of the solid Earth. In general, LEO gravity field satellite missions such as the GRACE mission

cannot provide accurate estimates of the geocenter motion since its effect cannot be separated from other

parameters. As a result, the first-degree coefficients estimated from their measurements are of no value

(Rietbroek et al., 2012).

Introducing the moments of inertia of the Earth with respect to the x−, y−, z− axes

Jx =

$

Earth

(y
′2+ z

′2)dM, Jy =

$

Earth

(z
′2+ x

′2)dM, Jz =

$

Earth

(x
′2+ y

′2)dM , (2.21)

and the product of inertia of the Earth,

Jxy =

$

Earth

x
′
y
′
dM, Jyz =

$

Earth

y
′
z
′
dM, Jxz =

$

Earth

z
′
x
′
dM , (2.22)
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we end up with the degree two coefficients (Hofmann-Wellenhof and Moritz, 2006):

A20 = G[(Jx + Jy)/2− Jz], A21 = GJxz , A22 =
1
4

G(Jy − Jx)

B21 = GJyz , B22 =
1
2

GJxy .
(2.23)

If the z axis of the coordinate system coincides with the Earth’s principal axis of moment of inertia,

Jxz , Jyz and consequently A21, B21 will be equal to zero. Coefficient A20 is the largest perturbation term

and is related to the ellipsoidal character of the Earth. It depends on the difference between the mean

equatorial moment of inertia and that around the z axis, thus characterizing its flattening. Coefficient A22

is related to the difference in the moment of inertia with respect to the two axes in the equatorial plane,

and thus it describes the equatorial non-symmetry of the mass distribution inside the Earth.

2.1.2 Direct tides (3rd Body)

The satellite as well as the Earth itself are affected by gravitational forces of other celestial bodies,

mainly the Sun and the Moon. The resulting force acting on the satellite is called direct tidal force. The

acceleration of a satellite due to the attraction caused by a 3rd body with a point mass M is given by:

r̈ = GM

(

s− r

|s− r|3
− s

|s|3

)

, (2.24)

where s and r are the geocentric position vectors of the satellite and the celestial body respectively. For

a typical Low Earth Orbiter (LEO) gravity satellite where the Sun and the Moon are far much further

away from the Earth, the forces exerted from the Sun and the Moon are much smaller than the central

attraction of the Earth. Therefore, for many applications the solar and lunar geocentric coordinates are

not required to be known at the highest precision. Assuming an unperturbed motion of the Earth around

the Sun, low-precision simplified equations for the solar and lunar coordinates are given by Montenbruck

and Gill (2000).

2.1.3 Earth tides

Earth tides are a result of the attracting forces exerted by the gravitation of the Sun and the Moon,

which lead to a time-varying deformation of the Earth. This deformation has an effect on the motion

of the satellites. The Earth tides are categorized in solid Earth, ocean and pole tides, which are briefly

discussed in the following section. For a more detailed description we refer to Petit and Luzum (2010).

Solid Earth tides

The Earth’s solid body is elastic to first order. Thus, it responds to lunisolar gravitational attraction with

small periodic deformations which are called solid Earth tides. Similarly to the Earth’s static gravity

field, spherical harmonics can be used to expand the solid Earth tidal-induced gravity potential that affect
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the perturbed motion of the satellite. The time-dependent corrections to the unnormalized geopotential

coefficients can be computed according to Sanchez (1975):















∆Cnm

∆Snm















= 4kn

(

GM

GME

)

(

RE

R

)

n+1

√

(n+2)(n−m)!3

(n+m)!3
Pnm(sinφ)















cos(mλ)

sin(mλ)















(m , 0). (2.25)

where M and R represent the mass and the geocentric distance of the Sun or the Moon, φ and λ their

corresponding Earth-fixed latitude and longitude and kn the Love numbers of degree n.

Ocean tides

The response of the oceans to the lunisolar gravitational attraction is known as ocean tides. It is another

time-variable phenomenon occurring in the ocean and causing cyclic variations in the local sea level.

This oceanic mass redistribution can be represented, as well as the solid Earth tides, by corrections of

unnormalized geopotential coefficients (Montenbruck and Gill, 2000):















∆Cnm

∆Snm















=
4πGR2

E
ρw

GME

1+ k
′
n

2n+1























∑

s(n,m)
(C+snm +C−snm cos θs)+ (S+snm + S−snm sin θs)

∑

s(n,m)
(S+snm + S−snm cosθs)+ (C+snm+C−snm sin θs)























(m , 0). (2.26)

where ρw is the density of the seawater, k
′
n are the load-deformation coefficients of degree n, C±snm and

S±snm are the ocean tide coefficients in meters for the tide constituent s, θs is the weighted combination

of the six Doodson variables. The Doodson variables are closely related to the arguments of the nutation

series and principally denote the fundamental arguments of the Sun and Moon orbits.

Pole tides

Pole tides are caused by the contribution of the polar motion to the centrifugal potential due to Earth

rotation. They affect mainly the geopotential coefficients C21 and S21 and can cause up to 25 mm tidal

response in radial direction and 7 mm in horizontal direction (Petit and Luzum, 2010)

2.1.4 Non-gravitational forces

Atmospheric drag

Atmospheric drag is one of the largest non-gravitational perturbation forces that act on a LEO satellite

and requires quite cumbersome calculations in order to be precisely modeled. The accurate modeling of

aerodynamic forces is difficult due to the poor knowledge of the physical properties of the atmosphere

(especially the density of its upper part). Moreover, a detailed knowledge of the interaction between

neutral gas and charged particles with the different spacecraft surfaces is required. Finally, the time-
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varying attitude of the satellite with respect to the atmospheric relative velocity has also to be taken into

account.

Due to residual atmosphere, the satellite will experience atmospheric drag with a direction opposite

to the velocity of its motion υr (Montenbruck and Gill, 2000):

r̈ = −1
2

CD

A

m
ρυ2

r eυ , (2.27)

where m is satellite’s mass, ρ is the atmospheric density at the location of the satellite, A is the satellite’s

cross-sectional area hit by a small mass element of an atmosphere column, eυ = υr/υr is the unit vector of

the relative velocity between satellite and atmosphere and CD is a dimensionless quantity that describes

the integrated interaction of the atmosphere with the material of the satellite’s surface.

Solar radiation pressure and Earth Albedo

The radiation of the Sun exerts forces on a satellite by the absorption or reflection of photons. The

acceleration due to the solar radiation depends on the satellite’s mass and surface area. For a simplified

case where the satellite’s surface is perpendicular to the direction of the Sun this acceleration is given by

(Montenbruck and Gill, 2000):

r̈ = −Cr Ps

A

m
(AU)2 r− rs

|r− rs |
, (2.28)

where Cr is the radiation pressure coefficient, A and m are the area of the surface and the mass of the

satellite respectively, AU is the length of one Astronomical Unit (≈ 1.5∗108km), Ps is the solar radiation

pressure constant at 1 AU, rs is the position vector of the Sun and r the position vector of the satellite.

Eq. (2.28) is not precise enough for high-precision applications, such as geodetic space missions. In

those cases, a detailed satellite structure together with its various surface properties has to be taken into

account. An even more realistic modeling includes the use of shadow models for eclipse conditions, or

Sun’s occultation by Earth and Moon.

Earth reflects back radiation itself as a response to the solar radiation that it is receiving. The ratio

between the reflected radiation and the incoming one is called Earth albedo. It comprises two com-

ponents, the short-wavelength optical and the long-wavelength infrared radiation. The effect from both

components decreases with increasing altitude. Typical amplitude values for the albedo accelerations

sensed by LEO satellites reach up to 10% until 35% of the accelerations due to direct solar radiation

pressure (Knocke et al., 1988).

2.2 Geopotential and its functionals

Any object located at the surface of the Earth will be subjected to both the gravitational force of the Earth

~gE and the centrifugal force ~gC due to Earth rotation. The sum of those two vectors ~g is the gravity vector

~g = ~gE + ~gC . (2.29)
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Objects located outside the Earth’s surface will have equal ~g and ~gE values. The corresponding potential

functions of these forces are the geopotential W , the gravitational potential V and the centrifugal potential

Ω

W = V +Ω. (2.30)

Let P be a point on the surface of the Earth with rectangular coordinates (x, y, z). The gradient of the

geopotential W delivers the gravity vector ~g and its magnitude g at point P

~g = grad(W ) =





































∂W
∂x

∂W
∂y

∂W
∂z





































, (2.31)

g = |~g | =

√

(

∂W

∂x

)2

+

(

∂W

∂y

)2

+

(

∂W

∂z

)2

. (2.32)

An equipotential surface of the gravity field of the Earth can be implicitly defined as a surface with

W (x, y, z) = constant (2.33)

One of the infinite equipotential surfaces around the Earth coincides approximately with the global mean

sea level, and is known as the geoid.

Determination of the Earth’s gravity field is facilitated by splitting it into a “normal” and a remaining

small “disturbing” field. The normal gravity field has an equipotential surface of an ellipsoid of revo-

lution, which is a second approximation of the figure of the Earth. The potential of the normal gravity

field is called normal potential U and its gravity magnitude normal gravity γ. The difference between

the geopotential W and the normal potential U is the disturbing potential T

T =W −U (2.34)

Let P and Q be two points on the same ellipsoidal normal such that the geopotential WP of the point P

laying on the geoid is equal to the normal potential UP of point Q laying on the ellipsoid. The difference

∆gP = gP − γQ , (2.35)

is called the gravity anomaly at point P. The difference between the gravity value at a point P and the

normal gravity value at the same point is called gravity disturbance

δgP = gP − γP . (2.36)

The distance along the ellipsoidal normal between a point P on the geoid and point Q on the ellipsoid is



14 2 Earth’s gravity field determination from satellite observations

called geoid height or geoid undulation. It can be related to the disturbing potential with Bruns formula:

N =
T

γ
(2.37)

It is usually assumed that there are no masses outside the geoid and that the gravity observations

refer directly to the geoid. In that case, the density ρ is zero everywhere outside the geoid. Therefore,

the disturbing potential T is harmonic there and satisfies the Laplace equation (2.7). Moreover, assuming

a sphere instead of a reference ellipsoid for the equations of the quantities T , ∆g, δg and N leads to a

tolerable error due to approximation, since these quantities are small. Therefore, the following equations

are derived (Hofmann-Wellenhof and Moritz, 2006):

∆g = − ∂T
∂r
− 2

r
T, (2.38)

δg = − ∂T
∂r
, (2.39)

where r is the geocentric distance of a point outside the Earth. The quantities T , ∆g, δg and N can also

be expressed in spherical harmonics:

T(r, θ , λ) =
GME

RE

∞
∑

n=2

(

RE

r

)n+1 n
∑

m=0

[

C
′
nmRnm(θ, λ)+ SnmSnm(θ, λ)

]

, (2.40)

∆g(r, θ , λ) =
GME

RE
2

∞
∑

n=2

(n− 1)
(

RE

r

)n+2 n
∑

m=0

[

C
′
nmRnm(θ, λ)+ SnmSnm(θ, λ)

]

, (2.41)

δg(r, θ , λ) =
GME

RE
2

∞
∑

n=2

(n+1)
(

RE

r

)n+2 n
∑

m=0

[

C
′
nmRnm(θ, λ)+ SnmSnm(θ, λ)

]

, (2.42)

N(r, θ , λ) =
GME

REγ

∞
∑

n=2

(

RE

r

)n+1 n
∑

m=0

[

C
′
nmRnm(θ, λ)+ SnmSnm(θ, λ)

]

, (2.43)

where C
′
nm = Cnm −C

ell

nm, are the differences of the geopotential coefficients to the reference normal po-

tential coefficients. The above equations assume C00 = C
ell

00 , which is the case when the chosen reference

parameters GME and RE are close to the true values. It is also assumed that the origin of the coordinate

system is located in the center of mass of the Earth, which results in C
′
1m = S

′
1m = 0.

The summations at Eqs. (2.14) are normally truncated to a certain degree n = nmax . The maximum

degree n = nmax correlates to the spatial resolution at the Earth surface by:

λmin ≈ 40000km/2lmax , (2.44)

where λmin is the minimum wavelength (or half wavelength resolution) of the gravity field features that

are resolved by the (lmax +1)2 parameters of the spherical harmonic coefficients Cnm , Snm. The average
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signal amplitude per degree n of a spherical harmonic coefficient can be expressed by “Kaula’s rule of

thumb”:

σn ≈
√

(2n+1)
10−10

n4
. (2.45)

The power of the gravity potential signal at degree n of the spherical harmonic expansion can be

expressed by the Signal Degree Amplitude (SDA) (Ilk et al., 2005):

SDAn =

√

√

n
∑

m=0

(

C
2
nm + S

2
nm

)

. (2.46)

Two different gravity field models a and b can be compared degree-wise with use of the Difference

Degree Amplitude (DDA) (Ilk et al., 2005):

DDAn =

√

√

n
∑

m=0

(

∆C
2
nm +∆S

2
nm

)

, (2.47)

with ∆Cnm = Cb,nm −Ca,nm and ∆Snm = Sb,nm − Sa,nm. The formal error of a gravity field model can also

be represented degree-wise as a function of the formal errors of the spherical harmonic coefficients σ
Cnm

and σ
Snm

by the Error Degree Amplitude (EDA) and the Cummulative Error Degree Amplitude (CEDA):

EDAn =

√

√

n
∑

m=0

(

σ2
Cnm

+σ2
Snm

)

. (2.48)

CEDAn =

√

√

n
∑

i=2

n
∑

m=0

(

σ2
Cim

+σ2
Sim

)

. (2.49)

2.3 Dedicated gravity satellite missions

The accurate determination of the gravity field of the Earth has been a subject of many satellite missions

throughout the years. Even since the launch of Sputnik 1 in 1957, its orbit data such as optical obser-

vations, laser tracking and Doppler tracking data, have been used for estimation of Earth gravity field

models (Vetter et al., 1993). With the operation of the GPS in the 1990’s the HL-SST method began to

be used, by tracking between the GPS satellite and a LEO satellite. However, due to signal attenuation

with height, those methods did not provide enough information on the short wavelength gravity signals

and the improvement was limited to the long and medium wavelength part. In order to meet the de-

mands for an accurate determination of Earth’s gravity field, dedicated satellite gravity missions had to

be considered and designed.
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2.3.1 The CHAMP mission

The CHAMP (Reigber, 1995) was the first LEO dedicated geopotential satellite mission with geoscien-

tific and atmospheric research objectives, to carry a GPS receiver in space. It operated for 10 years (from

2000 until 2010) and was initiated by the Deutsches Geoforschungszentrum (GFZ) and managed by the

Deutsches Zentrum für Luft und Raumfahrt (DLR). Its primary objective was to collect simultaneously

highly precise gravity and magnetic field measurements. The main observables were the HL-SST ob-

servations from the GPS satellites to the CHAMP satellite. Along with the GPS receiver, the CHAMP

satellite contained also an accelerometer for measuring the sum of the non-gravitational forces acting

on the satellite, and a star tracker which provided the orientation of the satellite in space. CHAMP data

initially aimed to map the Earth’s global long to medium wavelength gravity field, but have also been

successfully used for the retrieval of its low frequency temporal variations. In Prange (2010) the Earth’s

static gravity field is resolved up to a maximum degree nmax = 106 and the largest seasonal variations

such as trends (nmax = 10) are also estimated.

2.3.2 The GRACE mission

The GRACE mission launched in March 2002 is a dedicated twin-satellite gravity mission between the

National Aueronautics and Space Administration (NASA) and DLR, with a main objective to monitor

the time-variable gravity field of the Earth (Tapley et al., 2004). Main focus of the GRACE mission is to

quantify the on-going mass redistributions near the Earth’s surface that related to geophysical and clima-

tologically driven processes. Since its launch, it has provided the user community with observation time

series that are of great value for a wide spectrum of the Earth system related applications. The estimation

of mass changes due to the continental water cycle from GRACE fields has been very successful (Tapley

et al., 2004; Lambert et al., 2013; Wouters et al., 2011; Ramillien et al., 2011). GRACE gravity field

solutions have also been extensively used for estimation of ice sheet mass loss at Antarctica (Luthcke

et al., 2013; Chen et al., 2011; Schrama and Wouters, 2011) and Greenland (Velicogna and Wahr, 2013),

as well as GIA for this region (Riva et al., 2009). Moreover, GRACE is even able to detect the gravity

changes due to mega earthquakes (magnitude M > 8.5) and contribute to the estimation of co- and post-

seismic effects (Han et al., 2006; Einarsson et al., 2010). GRACE data have been successfully used for

the estimation of polar motion excitation (Jin et al., 2010).

The GRACE mission consists of two identical satellites that orbit one behind the other in the same

orbital plane at a distance of 220km. The GRACE satellites are similar in construction as the CHAMP

satellite except for the boom with the magnetic field instruments, and they represent free falling proof-

masses in the Earth’s gravity field. However, the GRACE mission is the first one to employ the satellite-

to-satellite concept in the low-low mode (LL-SST). Following this measuring concept (Fig. 2.3.1), the

inter-satellite separation (range) of the two satellites and the its change over time (range-rate), allows

for the recovery of the global gravity field down to spatial scales of a few hundred kilometers with a

temporal resolution of monthly or even sub-monthly intervals.
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The distance variation is measured by the KBR instrument, that provides dual one-way range obser-

vations by means of microwave radio link transmission in two frequencies in the K/Ka-band. The KBR

instrument is able to measure the range between the satellites with an accuracy of about 10µm and the

corresponding range-rate with 1µm/sec. Along with the KBR instrument, each GRACE satellite carries

a GPS receiver, a cold gas propulsion system, three magnetic torque rods, a three-axis magnetometer, a

three-axis Inertial Measurement Unit (IMU) for measuring the angular rates, star tracker cameras and an

accelerometer. The star tracker cameras provide the precise orientation (attitude) of each satellite with

respect to the stars. The GPS receiver serves for the precise orbit determination of the GRACE satellites

and provides data for atmospheric and ionospheric profiling. The GPS data are also needed for calibrat-

ing the accelerometers. The GPS measurements through the HL-SST principle, contribute mainly to the

estimation of the low degrees of the gravity field. The accelerometer is responsible for measuring all the

non-gravitational forces that act on the satellite.

Gravity field estimates from the GRACE mission are provided by several groups, which apply differ-

ent processing strategies and tuning parameters that result in solutions with regionally specific variations

and error patterns. Fig. 2.3.2 depicts the CEDA values for solutions provided from the GFZ and visual-

izes the progress that is achieved from release 04 to release 05. Overall, a mm internal accuracy in terms

of geoid height undulations can be achieved at a spatial resolution of 350 km half wavelength.

Figure 2.3.1: GRACE mission measuring concept (Courtesy of CSR/TSGC, retrieved 28 May 2015,
from http://www.csr.utexas.edu/grace/publications/presentations/HPC2001.html)

http://www.csr.utexas.edu/grace/publications/presentations/HPC2001.html
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Figure 2.3.2: CEDA values for the monthly GFZ RL04 and RL05 solutions in terms of geoid height
undulations (Courtesy of GFZ potsdam, retrieved 28 May 2015, from http://www.gfz-potsdam.de/sekti
on/globales-geomonitoring-und-schwerefeld/themen/entwicklung-betrieb-und-auswertung-von-schwe
refeld-satellitenmissionen/grace/schwerefeldergebnisse/grace-gfz-rl05/)

2.3.3 The GOCE mission

The GOCE mission was launched on 17th of March 2009 by the ESA as the first Earth Explorer mission.

GOCE completed its mission after nearly trippling its lifetime and re-entered the atmosphere on 11th of

November 2013. Its primary objective was the survey of Earth’s static gravity field with a global mean

accuracy of 1 mGal in terms of gravity anomalies. Eventually, GOCE data contributed to the estimation

of a high resolution map of Earth’s gravity field reaching accuracies of 2.4 cm at a spatial scale of 100 km

outside the polar regions (Brockmann et al., 2014). The spacecraft operated at a very low orbital altitude

of under 270 km which, late in the mission, was lowered further to 224 km. The satellite was equipped

with active drag compensation and angular control, in order to maintain its low orbit altitude on one

hand, and to compensate for the effect of all non-gravitational forces acting on it, on the other. GOCE’s

core and unique measurement instrument is a three-axis gradiometer based on three pairs of electrostatic

http://www.gfz-potsdam.de/sektion/globales-geomonitoring-und-schwerefeld/themen/entwicklung-betrieb-und-auswertung-von-schwerefeld-satellitenmissionen/grace/schwerefeldergebnisse/grace-gfz-rl05/
http://www.gfz-potsdam.de/sektion/globales-geomonitoring-und-schwerefeld/themen/entwicklung-betrieb-und-auswertung-von-schwerefeld-satellitenmissionen/grace/schwerefeldergebnisse/grace-gfz-rl05/
http://www.gfz-potsdam.de/sektion/globales-geomonitoring-und-schwerefeld/themen/entwicklung-betrieb-und-auswertung-von-schwerefeld-satellitenmissionen/grace/schwerefeldergebnisse/grace-gfz-rl05/
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servo-controlled accelerometers. The gradiometer measures acceleration differences along baselines of

0.5 m in the Gradiometer Reference Frame (GRF) (Rummel et al., 2011). These measurements are

reduced by centrifugal and angular acceleration terms and are properly calibrated before they serve as

the second derivatives of the Earth’s gravitational potential in the GRF.

2.4 Concepts for future satellite gravity missions

The recent dedicated satellite gravity missions described in sec. 2.3 have successfully monitored pre-

cisely the static and temporal part of Earth’s gravity field. Especially with the GRACE mission, more

than a decade-long continuous series of space-based observations of changes in the Earth’s gravity field,

from global down to regional spatial scales on time scales even of one week, demonstrated the importance

of such missions for monitoring key climate indicators such as ice-sheet mass balance, the total water cy-

cle and other mass transport processes. Their global view of mass transport provides a unique framework

for the coherent interference between results from other missions observing Earth subsystems.

On the way to meet the scientific challenges, future satellite gravity missions should aim to overcome

the shortcomings of their predecessors. Designing concepts for future satellite gravity missions is closely

related to setting the goals to be achieved in the short, medium and long term. The short-term goals,

which receive the highest priority, include:

• Continuation of the observation time series

The medium-to-long term goals include:

• Increase of the spatial resolution

• Increase of the temporal resolution

• Providing complementary observations and products

The means to achieve the short-term goal is the launch of missions such as the GRACE-FO mission, in

order to maintain uninterrupted time series of measurements. The means to achieve the medium-to-long

term goals include:

• Increase of the integrated sensors’ accuracy

• Improvement of the supporting platforms (e.g. active compensation of drag forces)

• Usage of novel measurement principles

• Enabling complex Satellite Formation Flights (SFFs) with use of multiple satellite pairs, or even

satellite constellations
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2.4.1 The GRACE Follow-On mission

Among the scientific user community, it is generally agreed that one of the most valuable aspects for an

integrated monitoring of the system Earth is the availability of a continuous and uninterrupted time series.

In order to continue the record of climate change observations after the end of the GRACE mission,

NASA and GFZ approved the launch of a successor mission simply called GRACE-FO. The mission is

intended to act as a bridge connecting the original GRACE mission to the future Next Generation Gravity

Missions (NGGMs).

The launch of GRACE-FO is scheduled for August 2017 (Flechtner et al., 2014a) and the setup

will again consist of a pair of twin satellites which are based on GRACE and Swarm (Friis-Christensen

et al., 2008) heritage. The instruments are slightly modified compared to those used in GRACE. The

star cameras have an improved configuration, the IMU is more reliable, the thermal control is improved

and the KBR instrument has been modernized based on heritage from the Gravity Recovery and In-

terior Laboratory (GRAIL) mission. As secondary objective, GRACE-FO will carry a Laser Ranging

Interferometer (LRI) in order to demonstrate its effectiveness in improving the LL-SST measurement

performance, which is directly linked to the accuracy of the gravity field models. The LRI design is

based on the so called “race track configuration”(Sheard et al., 2012) and the minimum operation time

is set to one year. The LRI will be operated in parallel with the microwave ranging instrument, and the

goal is to increase the LL-SST inter-satellite measurement accuracy by a factor of 1000 compared to the

KBR measurements from GRACE.

2.4.2 Next Generation Gravity Missions (NGGMs)

CHAMP was the first dedicated geopotential satellite mission to deliver precise gravity field models for

the long and medium wavelengths. GRACE was a major step forward compared to CHAMP, and over

the years, the gravity field processing centers improved their processing schemes and delivered much

more accurate solutions. However, there are still limitations and shortcomings that cannot be overcome

with the technology used for the GRACE or even GRACE-FO mission. Limitations posed from the mea-

suring instruments are expected to be, up to a certain extent, overcome in the future. For example, the

usage of laser interferometry for the basic measuring instrument of the inter-satellite distance, metrology

improvements at the design of the accelerometers and the star cameras and usage of an improved drag

control system, will all contribute to a general enhancement of the accuracy of the gravity field genera-

tion. However, a typical GRACE SFF is based on an architecture consisting of a master-slave formation

with co-planar orbits. This concept provides the difference of the first derivatives of the gravitational po-

tential between the two satellites, but it is sensitive only in the along-track direction. Since the GRACE

orbits are nearly polar, sampling at the along-track direction is almost always parallel to the direction

North-South. That allows for minor information for the gravitational forces to be gathered in the radial

and cross-track directions, and introduces anisotropy to the system. Also connected to sampling, another

limiting error source for in-line LL-SST missions like GRACE and GRACE-FO is the temporal aliasing
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caused by under-sampling signal of interest and by errors in the background models for atmosphere,

ocean and ocean tide models (Zenner et al., 2012; Han et al., 2004). Temporal aliasing is one of the

major error sources of the GRACE mission and results into a distinguishable error pattern of longitu-

dial striping in the gravity field solutions. The aforementioned shortcomings set the challenges for the

NGGMs to be taken up. The current strategies for designing NGGM missions are discussed in detail in

sec. 4.





Chapter 3

Description of the simulation environment

for the gravity field recovery

This section is devoted to the description of the simulation environment for the gravity field recovery,

including the formulation of the mathematical model used for the gravity field retrieval, as well as all the

details concerning the gravity field processing procedure.

3.1 Outline of the simulation environment

For the purposes of this study, a simulation environment for full-scale LL-SST gravity field processing

was developed (Daras et al., 2014), based on the software available at the Lehrstuhl für Astronomische

und Physikalische Geodäsie (APG) used for processing of real GOCE data (Yi, 2012). The simulation

software (or else simulator) is a collection of Fortran subroutines that contains all the necessary pro-

cessing steps needed for a full-scale gravity field simulation retrieval, including the generation of the

dynamic orbits and of the pseudo-observations, the setting up of the Normal Equation (NEQ) system

and the solution of the system with the method of Least Squares Adjustment (LSA). The flowchart of

the gravity field simulation is given in Fig. 3.1. The simulation scheme is divided into three major

processing steps: the orbit simulation part, the setup of NEQs part and the solution of the NEQs. All

simulations are performed at the Linux cluster of the supercomputing center of the Leibniz Rechnenzen-

trum (LRZ). Whereas most of the processing is performed in a serial manner, the part of assembling

the NEQs (which is the core of the processing scheme) exploits the benefit of parallel processing. At

a higher level, the setup of NEQs is autonomously processed at a daily basis, occupying one node for

each day. By this, all days can be processed simultaneously, as long as there are enough nodes available

at the cluster. At the end of the processing, the NEQs are stored and are ready to be accumulated in

the next step (sec. 3.6.3). At a lower level, the setup of NEQs part itself is programmed by use of the

Open Multi-Processing (OpenMP) interface, a compiler extension that allows to add parallelism into the

source code via multithreading.
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Figure 3.1.1: Gravity field simulation flowchart

Real gravity field processing of a LL-SST-type mission, makes use of observations from the satellite

measuring units that are provided after a so-called Level-1 (L1) processing. Products from real observa-

tions such as GPS kinematic satellite orbits, inter-satellite ranges, non-gravitational accelerations sensed

by the accelerometers and star camera orientation data are not available in a simulation environment.

Thus, in order to simulate the Earth-system realistically, these observations have to be simulated, or their

effect has to be taken into account. The observations needed for the HL-SST and the LL-SST part of

the functional model are directly derived from the simulated dynamic orbits as described in Sec. 3.4.
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Let us call them pseudo-observations. The measurements of non-gravitational accelerations sensed by

the accelerometers and the star camera orientation data are not simulated explicitly. However, they are

implicitly considered in the gravity field processing, by taking into account the imperfection of their

sensors (sec. 4).

3.2 Coordinate and time systems

Geodetic applications require reference frames as a basis for three-dimensional, time-dependent position-

ing in global, regional and national geodetic networks. Reference frames are realizations of reference

systems, which define the coordinate system and datum in which all landmarks have unique coordinates.

The time systems in which the time variability of phenomena is expressed, are categorized based on

various periodic processes such as Earth rotation, Earth revolution and atomic oscillations.

Conventional Celestial Reference System

The motion of the Earth-orbiting satellites is usually described in a coordinate system called (conven-

tional) Celestial Reference System (CRS), with its practical realization being the (conventional) Celestial

Reference Frame (CRF). It is also called geocentric quasi-inertial system, due to the accelerated motion

of the Earth around the Sun. The system’s origin is located at the center of mass of the Earth. The X0
1 -

axis points towards the vernal equinox (on the line where the equatorial and the ecliptic plane intersect),

the X0
3 -axis is identical to the position of the angular momentum axis at the reference epoch January

1,2000,0h ,0min,0sec (J2000.0) and the X0
2 -axis is orthogonal to the X0

1 -axis and the X0
3 -axis in such a

way that it completes a right-handed system. The numerical integration of the equations of motion used

to simulate the dynamic orbits in this study (sec 3.3) is performed in the CRF.

Conventional Terrestrial Reference System

Satellite observations obtained from an observing site on the surface of the Earth cannot refer to a ref-

erence system such as the CRS which moves with the center of the Earth but is free of rotation. The

locations on or within the Earth are best described with the (conventional) Terrestrial Reference Sys-

tem (TRS), with its practical realization being the (conventional) Terrestrial Reference Frame (TRF).

For example, the specific forces acting on a satellite which are induced by the Earth’s gravity field, re-

quire geolocation provided at the TRS. The TRS is also called Earth-fixed coordinate system and its

origin is located at the center of mass of the Earth. The X3-axis is identical to the mean position of the

Earth’s rotational axis as defined by the Conventional International Origin (CIO). The X1-axis points

to the intersection of the International Earth Rotation Service (IERS) Reference Meridian (IRM), which

is close to the Greenwich meridian, while the X2-axis is orthogonal to the X1-axis and the X3-axis and

completes the right-handed system.
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The transformation between the CRF and the TRF is achieved by means of the following subsequent

rotations (Hofmann-Wellenhof et al., 2001):

rT = RMRSRNRPrC , (3.1)

where

rT ... vector in the TRF

rC ... vector in the CRF

RM ... rotation matrix for polar motion

RS ... rotation matrix for sidereal time

RN ... rotation matrix for nutation

RP ... rotation matrix for precession

The estimation of the nutation and precession matrices, as well as of the Greenwich sidereal time

is performed by the simulator using the Standards Of Fundamental Astronomy (SOFA) software pack-

age (Board, 2015), which follows the International Astronomical Union (IAU) conventions. The Earth

Orientation Parameters (EOP) used were taken from the IERS (EOP 08 C04), where the precession and

nutation parameters are related to the IAU 2006/2000A model.

Satellite-fixed Reference System

The satellite’s own local reference frame has its origin at the satellite’s center of mass. The realization

of such a reference frame includes a X S-axis which coincides with the satellite’s velocity vector for a

circular orbit and points towards the “along-track”direction, a X R-axis which points in radial direction

away from the satellite’s body and a XW -axis which is normal to the orbital plane and therefore called

“out-of-plane”or “cross-track”axis. The satellite-fixed reference frame is a co-moving frame, which

is particularly suited to describe non-gravitational perturbation accelerations, sensor biases and thrust

components. The transformation from the satellite-fixed to the quasi-inertial reference frame is achieved

by use of the transformation matrix E:

E =
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, (3.2)

where er, ew, es are the unit vectors at the CRF:

er =
r(t)
|r(t)| ,

ew =
r(t) × ṙ(t)
|r(t) × ṙ(t)| ,

es = ew × er .

(3.3)
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Time systems

The time system used to define the satellite’s motion at the TRF, is the GPS time system, which is

nominally related to the International Atomic Time (IAT) by:

tGPS = t I AT − 19.s000, (3.4)

where IAT is defined as the weighted average of the time kept by over 400 atomic clocks in over 50

laboratories around the world. The Terrestrial Time (TT) is the dynamic time that replaced the term

Ephemeris Time and Terrestrial Dynamic Time used in the past. It is related to the IAT by:

tTT = t I AT +32.s184, (3.5)

The Julian Date (JD) is defined by the number of mean solar days elapsed since the epoch 4713 B.C.,

January 1.d5. The Modified Julian Date (MJD) is obtained by subtracting 2400000.5 days from the

JD, which refers to 2000 January 1.d5 (or else J2000.0). Moreover, the timespan expressed in Julian

centuries of 36525 mean solar days between the epoch J2000.0 and a random epoch of observation,

defines the parameter T which is used at the estimation of the precession parameters needed in Eq. (3.1).

The Universal Time (UT) is a time standard that is the theoretical basis for all civil time-keeping. It is

defined as the Greenwich hour angle augmented by 12 hours of a fictional Sun that uniformly orbits in

the equatorial plane (Hofmann-Wellenhof et al., 2001). A version of the UT is the UT1, which includes

an additional correction for the polar motion. The Universal Time Coordinated (UTC) is also one version

of UT that coincides with the GPS standard epoch 1980, January 6.d0 and is related to the IAT by:

tUTC = t I AT − 1.s000n, (3.6)

with the integer n being the leap second that is reported by the IERS in the following way: when the time-

dependent difference dUT1 =UT1−UTC provided by IERS becomes larger than 0.s9, a leap second is

inserted into the UTC system. For example, in June 2000 the integer value was n = 32. The time series

of the IERS EOPs used at the estimation of the transformation matrix rT in Eq. (3.1), are provided in the

UTC system.

3.3 Simulation of the satellite orbits

The approach of gravity field processing used in this study (sec. 3.4) requires GPS kinematic orbits to be

used in a conventional tracking analysis as observations of satellite positions. For simulation purposes,

dynamic orbits have been simulated and used instead. Dynamic satellite orbits are computed by use of

a set of initial state vectors (position and velocity of the satellite) and a force model, which allows for

continuous computation of the satellite’s state vector. The initial state vector defines a solution of the

satellite’s equation of motion (Eq. (2.1)) at an initial epoch t0 and refers to the satellite’s center of mass
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in the CRF. The numerical integration of the equation of motion starting from the initial state vector,

provides the position and velocity vector of the satellite at every subsequent epoch t. Kaula (Kaula,

1966) was the first to express the Earth’s disturbing potential as a harmonic function of the Keplerian

parameters (Ω, i,ω, α, e,T0). However, the high accuracy that is nowadays required for the computation

of satellite orbits can only be achieved through the use of numerical methods for the solution of the

equation of motion (Montenbruck and Gill, 2000).

The orbit integrator used in this study follows a multistep method for the numerical integration ac-

cording to Shampine and Gordon (1975), which applies a modified divided difference form of the Adams

Predict-Evaluate-Correct-Evaluate (PECE) formulas and local extrapolation. According to this method,

the order and the step size are adjusted to control the local error per unit step in a generalized sense. For

detailed information refer to Yi (2012). The local error thresholds denote the accuracy of the orbit and

are selected by the user. They can reach up to 10−8m in an absolute and 10−15m in a relative sense when

applying standard double precision processing. The dynamic orbits are generated at the first part of the

gravity field simulation scheme, namely the “Orbit simulation”part (Fig. 3.1).

The usage of the dynamic orbits in a simulation environment is threefold:

• serving as computational points for the reference values of the observations (geolocation),

• explicitly computing the HL-SST and LL-SST reference values,

• implicitly computing the HL-SST and LL-SST pseudo-observations.

3.4 Functional model

The approach used for gravity field recovery is based on the integral equation approach (Schneider,

1969) which was later refined by Mayer-Gürr (2006) and named short-arc approach. It has already

been successfully applied in real data applications to recover satellite-only gravitational field models for

CHAMP, GRACE (Mayer-Gürr, 2006) and for GOCE (Yi, 2012; Schall et al., 2014). According to this

approach, the computation of a satellite’s orbit can be formulated as a boundary value problem in the

form of a Fredholm-type 2 integral equation. The orbit is divided into short arcs and the gravity field

coefficients are parametrized together with the boundary point values of each arc. The simulator uses

a modification proposed by Yi (2012) which guarantees the continuity of the orbit by setting up the

position vectors at the node points as unknown parameters and estimating them together with the gravity

field model (Sec. 3.6.1). It is therefore directly based on the orbit positions and does not require solving

variational equations, thus avoiding numerical errors due to differentiation.

The mathematical model implies a relationship between the orbit positions inside the arc and those

at the boundary points, as well as the parameters of the force model to be estimated. The equations of

motion in terms of the position of a satellite flying between the boundary points A and B of a short arc,
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have the form of a Fredholm integral equation of a second kind (Mayer-Gürr, 2006):

r(τ) = rA(1− τ)+ rBτ −T2
∫ 1

0
K(τ, τ′)f(r(τ′))dτ′, (3.7)

where K is a continuous kernel function (Schneider, 1969):

K(τ, τ′) =



















τ′(1− τ) for τ ≤ τ′

τ(1− τ′) for τ′ > τ
, (3.8)

rA and rB are the position vectors of the satellite at the beginning and the end of the arc respectively,

T = tB − tA the time period of the arc passage, τ = (t − tA)/T is the normalized time and f is the sum of

the specific forces acting on the two satellites. The equation of motion can also be expressed in terms of

position differences between two satellites:

r12(τ) = r12
A (1− τ)+ r12

B τ −T2
∫ 1

0
K(τ, τ′)f12(r(τ′))dτ′, (3.9)

where subscripts 1, 2 denote the different satellites, f12 the difference of the specific forces acting on the

two satellites and r12
A/B

the position differences between the two satellites for each boundary point A and

B. The velocity differences can be derived by differentiating Eq. (3.9):

ṙ12(τ) =
1
T

(r12
B − r12

A )−T

∫ 1

0

∂K(τ, τ′)
∂τ

f12(r(τ′))dτ′ (3.10)

The functional model follows the typical formulation used for LL-SST missions like GRACE, which

comprises of a HL-SST and a LL-SST component. Eq. (3.9) is used for the computation of the reference

values for the HL-SST part of the observation system. The LL-SST part requires observations that are

functionals of the KBR instrument measurements, such as the inter-satellite range, range-rate and range

acceleration. The functional model may use those observables individually or totally by taking them all

into account. In this study, the ranges and range-rates have been individually used as observables. The

reference values for the LL-SST part are derived by projecting Eqs. (3.9) and (3.10) into the line-of-

sight (LOS) of the two satellites. Projecting the position vector (Eq. (3.9)) onto the LOS leads to the

computation of the inter-satellite range:

ρ(τ) =‖ r2(τ)− r1(τ) ‖= e12(τ) · r12(τ), (3.11)

where e12 is the unit vector at the LOS direction:

e12(τ) =
r12(τ)

‖ r12(τ) ‖
, (3.12)

which is computed from the position vectors of the simulated dynamic orbits. Accordingly the projection
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of the velocity vector (Eq. (3.10)) into the LOS leads to the computation of the inter-satellite range-rate:

ρ̇(τ) = e12(τ) · ṙ12(τ) (3.13)

3.5 Formulation of the NEQ system

The relationship between a model function f and the vector of observations l̄ can be described by the

observation equation:

l̄ = f(x̄, ȳ)+ ē, (3.14)

where ē denote the random errors, x̄ are the unknown parameters that are to be estimated (i.e. gravity

field coefficients) and ȳ are the parameters that cannot be derived by the observations, but they influence

them nevertheless (e.g. high-frequency mass transport processes such as atmospheric changes at daily or

hourly time scales). The functional model for the equations of motion (Eq. (3.9)) is not a linear function.

A linearization can be achieved by expanding it into Taylor series and neglecting the higher order terms:

l̄ = l0+
∂f(x̄, ȳ)
∂x̄

∣

∣

∣

∣

∣

x0

(x̄− x0)+ . . . , (3.15)

where l0 is the vector derived from the a priori values of the unknown parameters:

l0 = f(x0 ,y0). (3.16)

Let l be the vector of the reduced observations, often called as observed minus computed (OMC) vector,

or vector of the pre-fit residuals:

l = l̄− l0, (3.17)

x be the solution vector which contains the corrections to the a priori parameters:

x = x̄− x0 , (3.18)

and A be the design matrix which contains the partial derivatives of the model function with respect to

the unknown parameters:

A =
∂f(x̄, ȳ)
∂x̄

∣

∣

∣

∣

∣

x0

. (3.19)

The linear observation equations can then be expressed as:

l = Ax+ e (3.20)
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This system of linear observation equations satisfies the Gauss-Markov theorem when the expected mean

value and the covariance of the random errors are assumed to be:

E(e) = 0 and C(e) = C(l) = σ2
0P−1 , (3.21)

where P is the weight matrix of the observations, C(l) is the covariance matrix of the observations and

σ0 is the a priori standard deviation of the unit weight.

The overdetermined Gauss-Markov model can be optimally solved by LSA, which is based on the

minimization of the quadratic sum of the misclosures:

L = eTPe = (l−Ax̂)P(l−Ax̂) =min. (3.22)

The minimization criterion is satisfied when:

∂L
∂x̂
= 2AT PAx̂− 2AT Pl = 0, (3.23)

where the hat symbol (^) at the variable x represents its estimate. Eq. (3.23) rewritten leads to the system

of NEQs:

Nx̂ = n (3.24)

with

N = AT PA the NEQ matrix and

n = AT Pl the right-hand side of the NEQ system.

N is a quadratic symmetric matrix with dimensions that correspond to the number of adjusted model

parameters. The NEQ system is then solved by Cholesky decomposition and the final solution vector x̂

is obtained. The a posteriori (also called post-fit) residuals ê are computed by:

ê = Ax̂− l (3.25)

The estimated (a posteriori) standard deviation of unit weight (also called root mean square (RMS) error)

is estimated by:

σ̂0 = RMS =

√

êTPê

f
, f > 0 , (3.26)

where f = n−m is the degree of freedom, n is the number of observations and m the number of unknown

adjusted model parameters. The variance covariance matrix C(x) of the adjusted model parameters is

defined as:

C(x) = σ̂2
0N−1. (3.27)

Eq. (3.9) describes the position differences between two satellites at a random normalized epoch τi,
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where

τi =
i − 1
N − 1

, for i = 1, . . . ,N, (3.28)

and N is the total number of discrete uniformly divided observation points inside one arc. Considering

all the observation points r12
τi

in one arc, the HL-SST part of the functional model can be written in a

matrix form:

l = Bb+h, (3.29)

where

lr =



























r12(τi)− r12
0 (τi)

...

r12(τN )− r12
0 (τN )



























the vector of the reduced observations, (3.30)

B =



























(1− τi) τi
...

(1− τN ) τN



























the matrix with the normalized time values, (3.31)

b =















r12
A

r12
B















the vector with the arc boundary values, (3.32)

(3.33)

and h the vector with the integral function of (3.9) evaluated at the N observation points:

h =



























h(τi)
...

h(τN )



























with h(τi) = −T2
∫ 1

0
K(τ, τ′)f12(r(τ′))dτ′ (3.34)

The unknown parameters of the functional model x consist of the gravity field coefficients and the bound-

ary arc values, occupying vectors x̃ and b, respectively. The relationship of the functional model with

the unknown parameters x̃ is achieved through linearization of the integral function h with respect to the

unknown parameters according to Eq. (3.15):

h = h0+ Ãx̃, (3.35)

where Ã is the design matrix with the partial derivatives of the integral h with respect to the unknown

gravity field coefficients x̃:

(Ã)i j =
∂h(τi)
∂x̃ j

, (3.36)

and h0 the reference values of the integral function h. In case of position differences used as observables,

the relationship between the integral function and the unknown parameters can be derived by applying

the chain rule to the partial derivatives of Eq. (3.36) through the differences of the specific forces f12
k
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between the two satellites, at the discretized epochs τi:

Ã =KG with (K)ik =
∂h(τi)

∂f12
k

and (G)k j =
∂f12

k

∂x̃ j

(3.37)

with K the integration kernel matrix and G the matrix with the partial derivatives of the specific forces

with respect to the gravity field coefficients. The convolution of the acceleration vector with the kernel

function at Eq. (3.9) can now be converted to a matrix multiplication, which gives the kernel matrix K

the following form:

K = −T2
∫ 1

0
K(τ, τ′) · dτ′. (3.38)

The derivation details of matrix K can be found in Mayer-Gürr (2006). The matrix G contains the partials

along all three directions:

Gx =

























































∂ ¨̃x0

∂ f 12
0

∂ ¨̃x0

∂ f 12
1
. . . ∂ ¨̃x0

∂ f 12
m−1

∂ ¨̃x1

∂ f 12
1

∂ ¨̃x1

∂ f 12
1
. . . ∂ ¨̃x1

∂ f 12
m−1

...
...

. . .
...

∂ ¨̃xu−1

∂ f 12
0

∂ ¨̃xu−1

∂ f 12
1
. . . ∂ ¨̃xu−1

∂ f 12
m−1

























































, Gy =

























































∂ ¨̃y0

∂ f 12
0

∂ ¨̃y0

∂ f 12
1
. . .

∂ ¨̃y0

∂ f 12
m−1

∂ ¨̃y1

∂ f 12
1

∂ ¨̃y1

∂ f 12
1
. . .

∂ ¨̃y1

∂ f 12
m−1

...
...

. . .
...

∂ ¨̃yu−1

∂ f 12
0

∂ ¨̃yu−1

∂ f 12
1
. . .

∂ ¨̃yu−1

∂ f 12
m−1

























































,

Gz =

























































∂ ¨̃z0

∂ f 12
0

∂ ¨̃z0

∂ f 12
1
. . . ∂ ¨̃z0

∂ f 12
m−1

∂ ¨̃z1

∂ f 12
1

∂ ¨̃z1

∂ f 12
1
. . . ∂ ¨̃z1

∂ f 12
m−1

...
...

. . .
...

∂ ¨̃zu−1

∂ f 12
0

∂ ¨̃zu−1

∂ f 12
1
. . . ∂ ¨̃zu−1

∂ f 12
m−1

























































.

(3.39)

Eqs (3.29) and (3.37) together deliver the linear Gauss-Markov model for the HL-SST part when position

differences are used as observables:

l̄r = Bb+KGx̃+ e. (3.40)

The NEQ system is completed with the inclusion of the linear Gauss-Markov model for LL-SST part:

l̄ρ = RBb+RKGx̃+ e, (3.41)

where R is the matrix with the partial derivatives of the 1-D inter-satellite ranges with respect to the

corresponding 3-D vectors of the position differences, which implicitly serves in projecting the HL-SST
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observation equations to the LOS:

R =



































∂ρ

∂r12 (τi)

...

∂ρ

∂r12 (τN )



































=



































e12(τi)

...

e12(τN )



































, (3.42)

where e12(τi) = [e12
x (τi)e12

y (τi)e12
z (τi)] is the unit vector at the LOS direction for epoch τi. The reduced

observation vectors l̄r and l̄ρ can be computed beforehand as follows:

l̄r = r12 − r12
0 (3.43)

l̄ρ = ρ− ρ0 (3.44)

where the measured parameters of position differences r12 are derived from kinematic orbit determination

and those of ranges ρ from the LL-SST distance measuring instrument, when processing with real data.

In our simulation environment, the dynamic orbits (Sec. 3.3) are used instead. The reference parameters

r0 and ρ0 are computed by:

r12
0 = Bb0 −Kf12

0 , (3.45)

ρ0 = R0Bb0 −R0Kf12
0 , (3.46)

with f12
0 being the vector of the reference values for the differences of the specific forces acting on the

two satellites, estimated by use of a reference background gravity field model. The vector b0 contains

the reference values for the boundary points r12
A

, r12
B

and the matrix R0 the reference values for the unit

vectors e12, which are estimated from the simulated dynamic orbits.

In case of using range rates ρ̇ as observables for the LL-SST part, the matrices K and B in Eqs (3.41),

(3.46) are substituted by their time derivatives K̇ and Ḃ respectively, where:

K̇ = −T

∫ 1

0

∂K(τ, τ′)
∂τ

· dτ′, (3.47)

and

Ḃ =
1
T



































−1 1

...
...

−1 1



































. (3.48)

The complete NEQ system consists of a HL-SST and a LL-SST part which contain observations of

different accuracy. For example, GRACE real data processing consists of a HL-SST part with position

differences computed from kinematic orbits of some cm accuracy, and a LL-SST part of KBR inter-

satellite measurements of some µm accuracy. In order to take these accuracy differences into account the
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complete NEQ system is expressed by a weighting summation of those two components (see also Sec.

3.6.3):

N =
1

σ2
hl

Nhl +
1

σ2
ll

Nll , (3.49)

n =
1

σ2
hl

nhl +
1

σ2
ll

nll , (3.50)

where the index hl stands for the HL-SST and ll for the LL-SST part.

3.6 Solution of the NEQ system

This section is dedicated to the description of the methods that lead to the optimal solution of the overde-

termined observation system with the method of LSA. The following sections are dedicated to the

description of those methods. Fig. 3.6 displays the scheme that is followed for estimating the unknown

parameters, as well as the a posteriori analysis that is performed.

3.6.1 Parameterization of the unknown parameters

As described in Sec 3.5, the functional model defines two types of unknown parameters to be estimated;

namely the gravity field coefficients and the boundary values of each arc. However, it is possible that

other parameters are also estimated (e.g. empirical accelerations, Sec. 6.2). In this study, we categorize

the parameters to be estimated as local and global parameters. The local parameters are all the parameters

that are valid only for a short period of time (i.e. time period of short arc, half-daily, daily), such as the

position vector at the boundary points and empirically estimated accelerations. The global parameters

are the parameters that are estimated once over the complete observation time period, such as the gravity

field coefficients Cnm, Snm.

The simulator of this study makes use of a modification of the “short-arc”approach (Mayer-Gürr,

2006) proposed by Yi (2012), that ensures the continuity of the orbit. The approach is pretty handy when

handling orbit data with interruptions, since whenever a data gap appears, the arc is terminated and a new

one is started. Uninterrupted short arcs are thus stacked together in a long arc whose boundary values

are set up as unknowns. Inside the long arc, the short arcs are connected to each other by setting up a

special condition which demands the end of one arc to have the same position as the beginning of its

consecutive. Eq. (3.40) can be expressed in terms of the linearized observation equations of Eq. (3.20)

for a random arc i, with the design matrix Ai and the total vector of unknown parameters xi:

Ai =















Bi

Ãi















and xi =















bi

x̃















(3.51)

As described in Sec. 3.6.3, the NEQs are accumulated arc-wise, leading to the accumulated design matrix
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A and the vector of the total unknown parameters over the period of 1 long arc x:

A =

















B́

Ā

















and x =















b́

x̃















(3.52)

where Ā =
∑ J

i=1 Ai and J is the total number of short arcs inside one long arc. B́ and b́ represent the

matrix with the normalized time values and the vector with the boundary values to be estimated over 1

Figure 3.6.1: Parameter estimation flowchart
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long arc correspondingly:

B́ =

























































































































































































(1− τ1) τ1

(1− τ2) τ2

...
... 0

(1− τN ) τk

(1− τ1) τ1

(1− τ2) τ2

0
...

... 0

(1− τN ) τN

...
...

...
. . .

(1− τ1) τ1

0 0 (1− τ2) τ2

...
...

(1− τN ) τN

























































































































































































1st Arc

2nd Arc

...

Jth Arc

, (3.53)

b́ =





























































r1
A

r2
A

...

rN
A

rN
B





























































, (3.54)

where the subscript ∧12 denoting the position difference between the two satellites has been neglected

for simplification. In our simulated environment we deal with uninterrupted orbit data. Therefore, the

short arcs are bonded to each other forming a long arc which has the length of 1 day. As an example,

considering a constant time period of 30 min for the short arcs leads to a total number of local parameters

equal to (J +1) × 3 = 147 per satellite pair for the period of 1 day.

3.6.2 Parameter pre-elimination

The explicit solution of the local parameters (Sec. 3.6.1) is not always required as a final product. For

the sake of efficiency, the local parameters are pre-eliminated from the NEQ system at a daily basis (Fig

3.1), after the accumulation of the NEQs (Sec. 3.6.3). The dimension of the NEQ system is then reduced

significantly, resulting into a more rapid inversion of the final normal matrix when solving for the gravity

field parameters.

Let us denote the two sets of parameters to be estimated as x1 = b́ for the local parameters and x2 = x̃
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for the global parameters. The NEQ system can then be divided in two parts:

















N11 N12

N21 N22

















·

















x1

x2

















=

















n1

n2

















(3.55)

The sub-vector x2 contains the parameters that we want to solve for, while sub-vector x1 the parameters

to be pre-eliminated. Solving the first part of Eq. (3.55) for x1 gives:

x1 = N−1
11 (n1 −N12x2). (3.56)

Inserting Eq. (3.56) into the second part of Eq. (3.55) yields:

(

N22 −N21N−1
11 N21

)

x2 =
(

n2 −N21N−1
11 n1

)

. (3.57)

Thus, the NEQ system can be re-arranged to:

N∗22x2 = n∗2, (3.58)

where

N∗22 = N22 −N21N−1
11 N21 the normal matrix of the global parameters x2 and

n∗2 = n2 −N21N−1
11 n1 the right-hand side of the reduced NEQ system.

From Eq. (3.52), it follows that matrix N11 corresponds to the matrix product B́T PB́, N22 to ĀT PĀ, N21

to B́T PĀ, n1 to B́T Pl and n2 to ĀT Pl. After the pre-elimination, the pre-eliminated parameters x1 are

taken account in the reduced NEQ system, although their estimates are not explicitly available. This

procedure does not influence the results for the global parameters x2, which are the same as if the pre-

elimination was not performed. During the gravity field processing of this study, the pre-elimination

is performed to the accumulated NEQs obtained from observations of 1 day. After solving the NEQ

system for the global parameters x2, the pre-eliminated local parameters x1 can be retrieved by means of

back-substitution, using Eq. (3.56).

3.6.3 Accumulation of the NEQs

The NEQ system requires storage and matrix operations that are of very large dimensions. A monthly

gravity field solution for a satellite mission like GRACE with a spatial resolution of 166 km (approx.

degree and order d/o 120), demands the estimation of 14400 unknown gravity field coefficients. Without

taking into account the co-estimated local parameters which are pre-eliminated at a previous step, the

number of unknowns will be equal to m = 14400 in a period of 1 month. Assuming a continuous orbit

sampling of 5 sec, the number of observations during 1 month period will be equal to n = 518400.

The corresponding design matrix An×m would possess 50 GBytes of disk space and the weight matrix
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Pn×n 1.8 TBytes. The computation of the normal matrix Nm×m = AT
n×mPn×nAn×m requires an enormous

amount of computer memory, which is not available with the current computer performing standards.

The demands for computer memory and storage are much more pronounced when simulating NGGM

scenarios with 2 satellite pairs and double number of observations n than the GRACE mission.

Luckily, the dimension of the system can be reduced to that of a size corresponding to the observa-

tions of a short arc. This can be achieved by use of the sequential LSA, according to which the vectors

of the reduced observations l and the design matrix A are generated for each short arc:

l =
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(3.59)

where J is the total number of arcs in 1 day. The NEQ system is then formed and accumulated arc-wise:

N =

J
∑

i=1

AT
i PiAi and n =

J
∑

i=1

AT
i Pili , (3.60)

where observations between different short-arcs are assumed to be uncorrelated. The accumulated NEQ

system is afterwards saved, but the arc-wise generated NEQ system is removed from the computer mem-

ory, therefore releasing the necessary memory space for the next short arc. The combined NEQ system

has now the size of an arc-sized system, which can then be solved to estimate the parameter vector x̂.

In our simulation environment, the NEQs are accumulated arc-wise for the period of 1 day (period

of 1 long arc). The local parameters are then pre-eliminated and the resulting NEQs are stored on a daily

basis. The setup of the daily NEQs is accelerated by exploiting the benefits of parallel processing and

attributing the processing of an individual day to a node of the Linux cluster. Finally, the daily NEQs

are combined in a monthly (or other) basis using the sequential LSA approach (this time accumulating

daily), and the system is solved through Cholesky decomposition.





Chapter 4

Design aspects and error budget of future

dedicated gravity satellite missions

The pre-requisites for NGGMs in order to improve the state-of-the-art accuracies that current missions

deliver, have been analyzed in several publications (Rummel, 2003; Sneeuw et al., 2005). The techno-

logical improvements of the NGGMs concerning the metrology of their sensors and the satellite system,

need to be accompanied by an optimization of the orbit design and the satellite formation parameters.

The search space for the parameters that can be, within certain ranges, adjusted in order to improve the

performance of a gravity mission, is indeed very wide. Apart from that, NGGMs plan to take advantage

of the benefits that SFFs which are more complicated than the simple GRACE-type in-line SFFs can

offer. This section begins with an overview of the state-of-the-art orbital design choices and the possible

SFF candidates for the NGGMs. As a next step, the science requirements consolidated by the scientific

and user communities are summarized, followed by the description of the noise models used for the

simulations. Finally, an error budget analysis with the given noise models is performed.

4.1 Orbit design

The performance of a gravity mission should already be defined in the pre-launch period, in order for

the selected orbit design to be optimized but also feasible. The parameters that can be adjusted, such as

the orbital altitude, the inter-satellite distance, the inclination and the repeat mode of the satellite orbits,

influence directly and indirectly the quality of the gravity field retrieval.

The choice of the orbital altitude is one of the most important parameters that affects directly the

gravity field estimation. For applications that aim at measuring very long-wavelength features such

as the temporal changes of Earth’s oblateness or relativistic parameters, the choice of higher altitudes

is preferred due to their serving as natural low-pass filters. In all other cases, especially when high

resolution gravity field mapping is the goal, the best choice is simply the lowest possible altitude. This

can be explained from the so-called inverse attenuation factor [r/RE]n+1, which reflects the variation of
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the gravity signal amplitude depending on spherical harmonic degree n due to the change of the orbital

altitude r. This factor results in the degradation of the gravity field recovery with the choice of higher

orbital altitudes.

For a non-drag free mission, the lowest meaningful starting altitude will be around 450 km, where

GRACE mission itself flies at a mean orbital altitude of 480 km. The satellite will then slowly descend

due to atmospheric drag, and its mission lifetime will depend on the solar activity and the satellite’s

aerodynamic parameters. In case of a drag-free mission, an allowable operational orbital altitude for an

assumed 10-year mission lifetime, will be around 290 km (Wiese et al., 2012). In Iran Pour et al. (2015),

it is assumed that the use of ion thrusters for an in-line formation will allow an altitude limit of 340 km,

taking into account a higher solar activity profile. The altitude choice also affects the errors induced by

temporal aliasing. In Murböck et al. (2014), the orbital altitude choice is optimized towards minimization

of temporal aliasing errors from both tidal and non-tidal sources.

Concerning the inter-satellite separation distance for LL-SST NGGMs, a laser interferometer will

be likely used, for which a 100 km separation is considered as a fair trade-off between instrument per-

formance and relative accuracy in determining short and long wavelength features of the gravity field

(Wiese et al., 2009). The inclination choice is closely connected to the spatial coverage. For example,

a polar orbit samples the Earth globally, while an inclined one may provide denser coverage at regions

with lower latitude at the expense of polar gaps with a diameter equal to 2 × (i − 90)o.

NGGMs are expected to fly in circular or near-circular orbits, in order to keep the relative changes in

the measured inter-satellite distances due to orbit eccentricity at a minimum level. It is also planned to

consider orbits with repeat subsatellite tracks in order to guarantee consistency between solutions, which

is something that GRACE lacks. A repeat period (or repeat cycle) of a satellite track is performed exactly

after β orbital revolutions, while the Earth rotates α times with respect to (w.r.t.) the satellite’s precessing

orbital plane. Thus, a satellite track repeats itself after an integer number of β orbital revolutions and

an integer number of α nodal days. A nodal day is defined as the time period needed for the ascending

node to be repeated over the same Earth-fixed meridian. A sub-cycle of the satellite track denotes a

separate sub-pattern that is repeated during the period of a full cycle. The repeat cycle or sub-cycle is

principally related to the choice of three orbital parameters, namely the orbital altitude, the inclination

and the eccentricity. Perhaps an even more important aspect than the choice of the orbit repeat modes, is

the maintenance of a dense sampling. Particularly, the goal is to obtain a homogeneous sampling with

a dense ground-track pattern that evolves uniformly in time. The orbit design should generally avoid

constellations that deliver big ground-track gaps, by predicting the gap evolution separately along the

longitudes and the latitudes.

Overall, the orbit design can be optimized towards the following NGGM mission requirements:

• high spatial resolution,

• long mission lifetime,

• high isotropy of the error spectrum,
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• feasibility of the SFF from technological and financial point of view,

• optimal usage of new sensor technologies and, at the same time, minimization of their coupling

effects,

• minimization of aliasing effects,

• homogeneous and dense ground-track sampling,

• constant repeat orbits cycles and sub-cycles

However, the optimization of the orbit design towards some of the aforementioned requirements (e.g.

system isotropy), has limitations when it comes to SFFs of a simple one-pair mission like the one used

for the GRACE mission.

4.2 Satellite formation flights

SFF concepts have been the study objective of space agencies like NASA, ESA, Centre National d’Études

Spatiales (CNES) and DLR since the beginning of gravity mission planning. The major difference be-

tween a SFF and a constellation of satellites, is that in case of a SFF the relative position and velocity

and sometimes attitudes between two satellites can be controlled. SFFs with focus on recovering Earth’s

gravity field, make use of the Satellite-to-Satellite Tracking (SST) measurement principle.

The first SFF concept used for a LL-SST mission, was the master-slave formation used for the

GRACE mission with a pure along-track configuration (Fig. 4.2.1, top-left). GRACE satellites fly sim-

ple in-line SFF at near-polar orbits, due to the demand for a global coverage. This leads to a severe

anisotropic sensitivity of the system, where the East-West variations of the gravitational field are sensed

much worse than the North-South ones. Since its launch, the data processing revealed the shortcom-

ings stemming from the restrictions imposed from its SFF (Sec. 2.4.2). Some of those shortcomings,

including the system anisotropy and the temporal aliasing effects, can be overcome by adding a second

pair of satellites (Visser et al., 2010; Wiese et al., 2011a). In the scientific literature there exist several

simulation studies that investigate the impact of complicated SFFs and SFFs constellations (Elsaka et al.,

2014; Wiese et al., 2009), as well as more feasible ones (Bender et al., 2008). Let us assume a leading

satellite instant position x, y, z expressed at the satellite-fixed reference frame with axes X S , XW , X R (see

Sec. 3.2). In case of circular orbits, the relative equations of motion are simplified to the linearized Hill

equations, which are also referred to as Clohessy-Wiltshire equations (Clohessy and Wiltshire, 1960):

ẍ +2nż = f x ,

ÿ+ n2y = f y , (4.1)

z̈ − 2nẋ − 3n2z = f z ,
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Figure 4.2.1: SFF and SFF constellations for NGGMs. Top (left to right): GRACE-type, multi-GRACE-
type and Cartwheel. Bottom (left to right): Pendulum, GRACE-Pendulum and Bender-type.

where n is the mean motion of the satellite. The system of Eqs. in (4.1) can be solved in a closed form,

assuming that no perturbations or thrusting accelerations are present (i.e. f x = f y = f z = 0). Exploring

the Clohessy-Wiltshire equations along with some principles of the relative dynamics of a circular orbit

(Elsaka, 2010), different SFF architectures can be realized.

When a satellite orbit with an out-of-plane motion (y component), is added to a satellite orbit with a

GRACE-type SFF, the configuration is of a Pendulum-type (Fig. 4.2.1, bottom-left). The two satellites

have slightly different orbital planes, but the baseline vector maintains a constant direction. The along-

track relative motion of the satellites, is replaced by the cross-track relative motion. Due to the difference

of the ascending nodes, a maximum out-of-plane separation takes place at the equator and a minimum

at the poles. A step further from the classical Pendulum SFF, is realized with the GRACE-Pendulum-

type SFF constellation (Fig. 4.2.1, bottom-middle), where a pair of GRACE-type satellites is combined

with a Pendulum-type formation. This constellation comprises of three satellites (GR-A, GR-B and

PEND-A) and establishes two inter-satellite baselines; one between GR-A and GR-B (corresponding to

the GRACE-type SFF) and another between GR-A and PEND-A (corresponding to the Pendulum-type

SFF).

All the simple SFFs that contain one pair of satellites, have restrictions when it comes to mutual

increase of both spatial and temporal sampling. The relationship between the spatial and temporal sam-

pling can be approximated by the so-called Heisenberg-rule of spatio-temporal sampling of a satellite

(Reubelt et al., 2010). For a LEO satellite the product between the spatial sampling Sspace and the tem-
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poral sampling Stime can be regarded as constant:

Sspace · Stime = 2πTrev = const , (4.2)

where Trev is the revolution period of the satellite. According to that rule, an increase of the spatial

sampling leads to a reduction of the temporal sampling (longer observation periods). This sampling

problem can be overcome by use of multiple SFF, or else SFF constellations.

A simple SFF constellation regarding the design complexity, is the four-satellite coplanar configu-

ration (Fig. 4.2.1, top-middle). This configuration consists of two collinear GRACE-type satellite pairs

which are in the same orbital plane, but distant from each other. The only benefit of this configuration

is that the sampling frequency is twice that of the simple GRACE-type formation, which brings im-

provements regarding aliasing issues. Another SFF constellation that has gained a lot of attention among

NGGM investigation studies, is the so-called Cartwheel configuration (Fig. 4.2.1, top-right). This SFF

constellation enables multiple observation types of satellite observations by considering the relative mo-

tion of a follower satellite S2 around the leader S1, at a 2:1 relative elliptical motion (i.e. the semi-major

axis has twice the size of the semi-minor one). The observations are obtained during the motion in the

along-track direction, as well as in the radial direction.

SFFs constellations of GRACE-Pendulum or Cartwheel type, are quite demanding in terms of mis-

sion implementation due to several constraints that the state-of-the-art technology imposes regarding the

satellites’ relative motion and omnidirectional inter-satellite ranging system (Flechtner et al., 2014b).

The sustainability of their formation will require complex maneuvers to be performed frequently, which

will substantially increase the demands on the propulsion system in a drag-free motion. In Wiese et al.

(2009) it is concluded that in case of the Cartwheel-type SFF, restrictions imposed from inaccuracies

in the background models (errors in the de-aliasing models and the ocean tide models) may lead to

performance similar to a GRACE-type SFF.

An SFF constellation design that has proved quite promising regarding NGGM planning, while at

the same time retaining its feasibility from an engineering point of view, is the Bender-type constellation

introduced by Bender et al. (2008). This constellation comprises of two pairs of collinear satellites, one

pair in a near-polar orbit and one in a lower inclined orbit (Fig. 4.2.1, bottom-right). The inclusion

of the lower inclined pair improves the East-West sensitivity to the gravity field variations compared to

the typical GRACE-type SFF. Therefore, the combination of two non-isotropic measurements taken in

different directions, increases the isotropy of the system. Another advantage of this configuration is that

even if the regions near the poles are sampled with only the near-polar pair, the spatial resolution is not

compromised due to the fact that the subsatellite tracks are denser in those regions. Overall, the Bender

configuration is considered as a good compromise between mission feasibility and potential improvement

of the gravity field estimation accuracy (Wiese et al., 2011a; Elsaka et al., 2014). This constellation has

already shown (Visser et al., 2010) substantial improvements regarding temporal aliasing effects, where

its error is reduced by at least one order of magnitude compared to GRACE.
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4.3 Selected orbits for the simulations

The satellite configuration used in this study for investigations concerning NGGMs, consists of a Bender-

type constellation flying in drag-free mode. Details about the orbit setup of the two configurations are

given in Table 4.1. The GRACE-type polar pair of the Bender constellation is used for a thorough

investigation on the effect of next generation sensor technology on the gravity field estimation process

(Sec. 4.6 and Chapter 5).

Altitude
(km)

Inclination
(deg)

Inter-satellite
distance (km)

β/α

(rev./day)
sub-cycle

(days)

Polar pair

361.9 92 100 172/11 3

Inclined pair

342.5 115 100 460/29 7

Table 4.1: Configuration setup of the orbits

Sampling
(sec)

Background
models

max d/o
(deg)

Absolute accuracy
(m)

5
GOCO03s
GOT4.7
AOHIS

120
50

120
10−8

Table 4.2: Orbit integration setup parameters

The Bender-type configuration serves for investigations concerning temporal aliasing issues of NGGMs

(Chapter 7). Table 4.2 includes the setup parameters for the integration of the dynamic orbits. The orbit

integration is performed with the highest level of absolute accuracy (10−8m). The orbits for the two pairs

of the Bender constellation have been optimized in order to fulfill specific science requirements set up

for the scopes of the “ESA-SC4MGV” project. The orbit choice was therefore optimized regarding an

11-year (full solar cycle) mission period, with the best possible spatial sampling that minimizes temporal

aliasing effects and remains feasible from a technological and financial point of view. The initial osculat-

ing Kepler elements that lead to the required full and sub-cycles of the satellite orbits, were provided by

TU-Delft at the frames of the project. These initial state vector parameters together with the background

force models mentioned in Table 4.2 were used for the generation of the dynamic orbits. For more details

about the orbit optimization procedure refer to Iran Pour et al. (2015). The ground-track spatial coverage

for a sampling period that corresponds to a complete cycle of the polar pair (11 days) is depicted at Fig.

4.3.1, whereas the complete cycle of the inclined pair (29 days) is depicted at Fig. 4.3.2. The green dots
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Figure 4.3.1: Spatial ground-track coverage of the near-polar pair of the Bender-type constellation for a
period of a full cycle (11 days).

Figure 4.3.2: Spatial ground-track coverage of the inclined pair of the Bender-type constellation for a
period of a full cycle (29 days).

in Figs. 4.3.1, 4.3.2-left, represent the starting ground-track positions, while the magenta and red dots

the ending positions of the full-cycle and the first sub-cycle, respectively.

4.4 Science and mission requirements

The definition of the science requirements for NGGMs taking into account all the different processes of

the system Earth, is a very demanding task that has been addressed extensively in many studies. ESA has

funded some of them that deal with the assessment of NGGMs for monitoring the variations of Earth’s

gravity (ESA, 2010, 2011; Iran Pour et al., 2015). The main challenge of space gravimetry missions of a

next generation, is to gain an improved understanding of the Earth’s state behavior and the coupling of its
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Figure 4.4.1: Science requirements derived in different studies for individual fields of applications. Red;
NGGM (ESA, 2010), green; NG2 (ESA, 2011), blue; e-motion (Panet et al., 2013), cyan; NGGM-D
(Gruber et al., 2014a). The light and dark grey curves represent the consolidated requirements of the
target and threshold scenarios respectively defined at Pail et al. (2015). (Plot taken from Pail et al.
(2015)).

dynamic processes. Fig. 4.4.1 (taken from Pail et al. (2015)) shows the science requirements defined by

different studies, for the thematic fields of hydrology, sea level (SL), ice mass balance (IMB) and glacial

isostatic adjustment (GIA). The requirements are given in terms of signal amplitude in equivalent water

height (EWH) w.r.t. the spatial resolution. Some of those requirements are highly connected to societal

needs. For example, the closing of the water balance by understanding the processes that govern the

water exchange between all sub-systems, is a prerequisite for a sustainable water resource management

strategy, and for the timely forecasting of floods and droughts. In the field of cryosphere, the evolution of

ice sheets and glaciers is crucial for the understanding of the Earth and climate system, and thus important

for the investigations about the climate change. Related to this, the ability of monitoring and predicting
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Figure 4.4.2: Anticipated performance in terms of spatial w.r.t. temporal resolution (left) and in terms of
spatial w.r.t. cumulative geoid height error (right). (Plot taken from Gruber et al. (2014b)).

the sea level change by closing the sea level budget, has an important societal impact. Improvements of

the accuracy of GIA models, is a very important aspect for solid Earth applications which will lead to a

better understanding of its coupling with cryosphere and oceans. At last, a requirement from geodetic

applications involves the global unification of height systems, which is expected to have a major impact

on land management applications.

The improvements towards the state-of-the-art GRACE and GOCE achievements that are expected

from a NGGM are included in the requirements for the optimization of the orbit design that are summa-

rized in Sec. 4.1. Additionally, it can also be mentioned that higher precision is expected to be achieved

by means of improvements in measuring technology. Fig. 4.4.2 (taken from Gruber et al. (2014b)) vi-

sualizes the anticipated performance of a NGGM defined in Iran Pour et al. (2015), together with the

bubble plots for all the application fields. The left part of Fig. 4.4.2, shows the spatial w.r.t. the temporal

resolution, where the right part shows the cumulative geoid error w.r.t. the spatial resolution. The curves

with the 3-, 10-, 30- and 365-day solutions are defined from the “ESA-SC4MGV” project (Iran Pour

et al., 2015) as mission requirements, where the GRACE and GOCE curves are also given as a reference.

In Pail et al. (2015), an integrated investigation of all the fields of application (i.e. continental hydrology,

cryosphere, ocean, atmosphere and solid Earth) concluded a required target performance of 5 cm in terms

of EWH for monthly fields and 0.5 cm/year for long-term trends at spatial resolution of 150 km. That

results in an improvement of the current GRACE mission performance roughly by a factor of 50, which

given the accuracies of the next generation sensors in combination with optimized satellite constellations
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could be a realistic goal. However, the limitations imposed from temporal aliasing issues (Murböck et al.,

2014), as well as the gravity field processing itself (Daras et al., 2014), raise serious doubts on whether

those accuracies can be achieved. Those limitations and strategies for their elimination are the subject of

Chapters 5 and 7.

4.5 Noise models for the performance of the instruments

This section is dedicated to the description of the analytical noise models used for the simulation of the

instrument performance. The stochastic models describe the behavior of state-of-the-art instruments that

are similar to the accuracies of the GRACE-FO mission. The noise time series of each error source are

then generated by scaling the spectrum of a normally distributed random time series according to the

corresponding spectral model.

4.5.1 Laser interferometer errors

NGGMs are expected to make use of a laser interferometer as their principle inter-satellite measurement

unit. Already on the GRACE-FO mission, the µm-level accurate KBR instrument will be supplemented

with a 50∼100 nm precise laser interferometer (Sheard et al., 2012). We assume a laser interferometer

with an error behavior (Fig. 4.5.1) based on a more optimistic synthesis of the preliminary requirements

from Sheard et al. (2012). The analytical model for the amplitude spectral density (ASD = PSD1/2) is

given by:
(
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100Hz

f

(
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100km

)2
)−1/2

[m/
√

Hz], (4.3)

with f being the frequency in Hz and ρavg the average inter-satellite distance in km. The noise time

series are generated in terms of ranges or range rates (through differentiation in spectral domain) and are

directly propagated to the solution through addition to the vector of the simulated pseudo-observations

ρ or ρ̇.

4.5.2 Accelerometer errors

Each satellite is equipped with an accelerometer (ACC) which serves in measuring the non-gravitational

forces acting on the satellite. The accelerometer has two sensitive and one less-sensitive axes. According

to Kim (2000), for GRACE (and expectedly also for GRACE-FO) accelerometers, the sensitive axes are

set to be at the along-track and radial direction, whereas the less-sensitive one at the cross-track direction.

The ASD (Fig. 4.5.2) for the two sensitive axes is given by:
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and for the less sensitive axis by:
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with f being the frequency in Hz. The noise assumptions are rather pessimistic for future LL-SST

gravity missions (ESA, 2010). Noise time series of acceleration differences between the two satellites

are generated for all three axes. Unlike the laser noise, the accelerometer noise is not transformed into

range or range-rate noise to be directly added at the observations, instead it is propagated through the

functional model into the system. It is therefore added to the modeled specific forces f12 which are then

integrated in a next step (Eqs. (3.9) and (3.10)).

4.5.3 Star camera errors

Each satellite LL-SST tandem carries a Star Camera Assembly (SCA), which consists of 2 simultane-

ously operated star cameras, individually placed on each satellite. The star cameras are used for the

precise orientation of the satellites within the attitude and orbit control system and for the correct inter-

pretation of the accelerometer measurements. Errors in the star camera measurements lead to attitude

determination errors and to uncertainties in the transformation of the non-gravitational forces from the

satellite-fixed reference system to the CRF. The satellite can experience rotations around the along-track

axis (roll), the cross-track axis (pitch) and the radial axis (yaw). The ASD of the analytical model for the
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Figure 4.5.1: ASD of the total laser interferometer error model and of the generated inter-satellite range
noise at 1 Hz sampling frequency. An average inter-satellite distance of 200 km was considered.
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star sensor noise (Fig. 4.5.3) is the one used for the “ESA-SC4MGV” project (Iran Pour et al., 2015),

which in terms of attitude angles for the roll rotation angle is given by:

10−5 ·














(

10−3Hz

f

)4

/















(

10−5Hz

f

)4

+1















+1















1/2

[rad/
√

Hz], (4.6)

and for the pitch and yaw rotation angles by:
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The generated noise of attitude angles is transformed into attitude quaternion time series which are added

epoch-wise to the transformation matrix of the satellite-fixed reference system to the CRF.

4.5.4 Residual drag accelerations

For reasons of orbit maintenance and formation monitoring, NGGMs will most probably fly in drag-

free mode. As a consequence, the sum of the non-gravitational forces acting on the satellite will be

compensated by the propulsion system. However, a complete compensation of the non-gravitational

forces cannot be achieved, leading to residual drag. The accelerations caused by residual drag affect

the satellite’s orbit, but are also sensed and measured by the accelerometers. Being an output of the

accelerometers, the residual drag accelerations are reduced from the specific forces acting on the satellite.
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Figure 4.5.2: ASD of the accelerometer error model and of the corresponding generated accelerometer
noise at 1 Hz sampling frequency, for the sensitive (blue) and less sensitive (red) axis.
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Their effect nevertheless, can still couple with other error sources, such as the attitude errors. The ASD

of the analytical model of the residual drag accelerations (Fig. 4.5.4), for the along-track component is

given by (Iran Pour et al., 2015):
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for the cross-track component by:
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and for the radial component by:
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Figure 4.5.3: ASD of the the star camera error model and of the corresponding generated noise at 1 Hz
sampling frequency, for the roll (blue), pitch and yaw (red) rotation angles.
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Figure 4.5.4: ASD of the residual drag analytical model and of the corresponding generated noise at 1
Hz sampling frequency, for the along-track (blue), cross-track (red) and radial (green) component.

4.6 Error budget analysis

Apart from the error sources that can be analytically modeled (Sec. 4.5), other error sources such as er-

rors resulting from temporal aliasing or background model inaccuracies have a major contribution to the

total error budget. The effect of each error source is determined individually by means of “closed-loop”

gravity field simulations (Fig. 4.6.1). These types of simulations take their name from the comparison of

the input gravity field entering the computations, with the output gravity field solution of the processing,

thus forming a closed-loop comparison. The misclosure of this comparison when the processing is noise-

free is a good estimate of the estimation accuracy. The input of the closed-loop simulation include the

force models that represent a so-called “true” world which is used to simulate the pseudo-observations.

Sensor noise generated from stochastic models can then be added to those error-free observations, in

order to simulate observations that are closer to real measurements. Another set of force models com-

prises the “nominal” world, which is used by the functional model to compute the reference observations.

Adjusting the components of the true w.r.t. the nominal world appropriately allows for estimating the

contribution of specific error sources. Table 4.3 provides the description of error sources that are inves-

tigated for their effect on the gravity field estimation.

All simulations of the error budget analysis were performed using the polar pair of the Bender con-

stellation (Table 4.1), and correspond to a solution period of one month. After experimenting with differ-

ent choices of short-arc lengths (20 ∼ 60 min), we were driven to the same conclusions as in Mayer-Gürr

(2006); i.e., the choice of short-arc length plays a minor role in the gravity field retrieval and only for
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Figure 4.6.1: Closed-loop simulation scheme.

the long wavelength component. A 30 min arc length was then chosen for all the simulations performed.

The results correspond to single-run simulations, and no iterations for improving the gravity field solu-

tions have been made. There is also no empirical parameterization, or any kind of filtering applied at this

stage, in order to examine the direct impact of the individual error sources to the quality of the gravity

field.

In order to analyze the error budget in a consistent manner, the system accuracy has first to be

determined as a basis for the comparisons. This is achieved via closed-loop simulations which use only

the most dominant perturbation force, namely the static gravity field of the Earth. In that case, the static

gravity field model GOCO03s, which is a satellite-only gravity field model based on GRACE, GOCE

and LAGEOS (Mayer-Gürr et al., 2012), was chosen (Table 4.3). GOCO03s was used for the generation

of the dynamic orbits (“true” force model), as well as for the gravity field retrieval (“nominal” force

model). As a consequence, our assumption is that our gravitational force model is perfectly known. Figs.

4.6.2 and 4.6.3 display the DDA of the closed-loop simulations performed for each noise case, where
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Noise case
“True”
force

models

max d/o
(deg)

Sensor
noise

“Nominal”
force

models

max d/o
(deg)

Closed-loop
misclosure

St. Dev.
[mm]

Error-free GOCO03s 120 - GOCO03s 120 1.2 · 10−1

Laser errors GOCO03s 120 Laser GOCO03s 120 1.2 · 10−1

ACC errors GOCO03s 120 ACC GOCO03s 120 4.4 · 101

SCA errors
GOCO03s

Res.
acceler.

120 SCA
GOCO03s

Res.
acceler.

120 4

Orbit errors GOCO03s 120

Orbits
10−2m

white
noise

GOCO03s 120 6 · 10−1

Ocean tidel
model
errors

GOCO03s
GOT4.7

120
50

- GOCO03s
EOT08a

120
50 2.4 · 101

Temporal
aliasing
errors

GOCO03s
AOHIS

120
120

- GOCO03s
AOHIS

120
120 3.3 · 101

De-aliasing
model
errors

GOCO03s
AOHIS

120
120

-
GOCO03s

AO
AO errors

120
120
50

1 · 101

Table 4.3: Processing details and geoid height reconstruction errors of the noise cases.

the inter-satellite range was used as observable. In cases where the solutions contain only the effect

of noise sources, the formal error curve of the input static gravity field model is depicted as reference.

For GOCO03s, this corresponds to error estimates of a GRACE static gravity field, as its contribution

is dominant up to d/o 120. For cases where temporal gravity field variations are used as input, their

signal power averaged over one month is depicted as reference. The last column of Table 4.3 delivers the

misclosures of the closed-loop simulations, in terms of standard deviations of geoid heights. Comparing

Fig. 4.6.2 top-left with Fig. 4.6.2 top-right, it is evident that the retrieval error of the laser noise case

is almost identical to the error-free case. The geoid height reconstruction errors for both cases have

equally large standard deviation of 1.2 · 10−1mm (Table 4.1). This finding, raises doubts of whether

the processing accuracy is a limiting factor for exploiting the nm accuracy of a laser interferometer to

its full extent. This problem is extensively addressed in Chapter 5. On the other hand, propagation of
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Figure 4.6.2: DDA in terms of geoid heights: Noise-free (top-left), Laser errors (top-right), ACC errors
(bottom-left), SCA errors (bottom-right). The errors of the input static gravity field is depicted in black.

accelerometer errors (Fig. 4.6.2 bottom-left) lead to a considerably larger retrieval error, which certifies

them as one of the most significant error sources. The treatment of accelerometer errors in the gravity

field processing chain is addressed in Chapter 6.

The residual accelerations are considered during the computation of the dynamic orbits, but their

effect is reduced at the gravity field processing through the reference observations. They are sensed

by the accelerometers and thus are part of accelerometer observations. The non-gravitational forces

measured by the accelerometers are transformed from the satellite-fixed reference system to the CRF,

with use of the star camera orientation measurements which are subject to errors. Therefore, the effect

of residual accelerations is coupled with the attitude errors of the star cameras. Their retrieval error is

depicted at Fig. 4.6.2 bottom-right. The error levels are larger than that of the laser, but smaller than that

of the accelerometer error levels and at the same level with the errors of the input static gravity field.

The impact of orbit errors on the gravity field processing was assessed by simulating the position

accuracy of real kinematic orbits. This was achieved by propagating 1 cm white noise of the orbit



58 4 Design aspects and error budget of future dedicated gravity satellite missions

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

G
eo

id
 h

ei
gh

t [
cm

]

 

 

St. Field Error
Ocean tide
model errors

0 20 40 60 80 100 120

10
-4

10
-3

10
-2

10
-1

 

 

St. Field Error
Orbit errors

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

degree n

G
eo

id
 h

ei
gh

t [
cm

]

 

 

Input - AOHIS
Temporal aliasing

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

degree n

 

 

Input - HIS
Dealiasing
model errors

Figure 4.6.3: DDA in terms of geoid heights: Ocean tide model errors (top-left), Orbit errors (top-right),
Temporal aliasing errors (bottom-left), De-aliasing model errors (bottom-right). The errors of the input
static gravity field (top) and the corresponding input gravity fields (bottom) are depicted in black.

positions of each satellite. For the HL-SST part of the NEQ system, the erroneous orbits served as

computational points for the reference values as well as actual observations. On the contrary, error-free

dynamic orbits were used as computational points for the reference values of the LL-SST part, in order

to maintain the inter-satellite measuring accuracy of a laser instrument. A relative weighting between

the HL-SST and the LL-SST part was also applied, with a σ0 of 1 cm and 10 µm used correspondingly.

Fig. 4.6.3 top-right depicts the retrieval error due to errors of the kinematic orbits.

One of the most significant error sources is temporal aliasing. Temporal aliasing occurs when high

frequency signals alias into the mean gravity field solutions. The Nyquist sampling theorem dictates that

a signal with f s sampling rate can be fully reconstructed only when it is band-limited at B ≤ f s/2, where

f s/2 is the so-called Nyquist frequency. Equivalently, a geophysical signal with a period more than twice

the sampling period of the gravity field retrieval, can be perfectly reconstructed. In case of temporal

variations of Earth’s gravity field retrieved in monthly or even shorter time periods, geophysical signals

with periods smaller than the Nyquist frequency unavoidably alias into the solutions. Temporal aliasing
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mainly results from the following:

• under-sampling of signal of interest (e.g. hydrology),

• errors of de-aliasing models (usually atmosphere and ocean),

• errors of ocean tide models.

Next, the impact of the temporal aliasing error sources is analyzed individually. Chapter 7 focuses on

gravity field processing techniques that minimize the overall temporal aliasing.

Fig. 4.6.3 bottom-left shows the impact of temporal aliasing that results from under-sampling of

the main geophysical processes of system Earth. Their signal power averaged over the retrieval period

is depicted in black in Fig. 4.6.3. Their time-varying gravity field changes are estimated from the

updated Earth System Model of ESA (Dobslaw et al., 2015). Those models are provided with a temporal

resolution of 6 hours, and are used as input in the generation of the dynamic orbits (Table 4.3). The values

between the 6-hourly snapshots are estimated by piece-wise linear interpolation. The integrated effect

of all processes has the abbreviation “AOHIS”. It consists of the individual components of atmosphere

(“A”), ocean (“O”), hydrology (“H”), ice (“I”) and solid Earth (“S”), which are also separately available.

Inspecting Fig. 4.6.3 bottom-left, confirms the severity of temporal aliasing due to under-sampling of

signals which is also typical for the GRACE mission. In fact, the Signal-to-Noise Ratio (SNR) is smaller

than 1 for degrees higher than 40, which is also the cause of the meridional-oriented striping features that

are present in GRACE gravity fields of a higher expansion.

GRACE gravity field processing typically makes use of high-frequency non-tidal models of atmo-

sphere and ocean (Dobslaw et al., 2013), in order to de-alias the gravity field solution from those signals.

The final product contains the integrated effect of hydrology (“H”), ice (“I” and solid earth (“S”). The de-

aliasing models are subject to errors, and the reduction of the high-frequency signals is inaccurate. This

results in temporal aliasing effects. For the scope of the “ESA-SC4MGV” project (Iran Pour et al., 2015)

an error model for the atmospheric and oceanic part (“AO”) de-aliasing models has been estimated. The

“AO” error model was synthesized empirically, by combining a signal and a random part. The signal part

served to maintain the spatial and temporal signal properties of the “AO” models. The signal dependent

part is 10% of the full “AO” signal, while the random part is scaled in a way that the RMS value of

each spherical harmonic coefficient is equal to 5% of the corresponding RMS value of the full signal.

Fig. 4.6.3 bottom-right depicts the retrieval errors due to the errors of the de-aliasing models. The signal

power of the corresponding averaged “HIS” field is plotted in black for reasons of comparison. The SNR

this time, remains larger than 1 until d/o 50.

Ocean, solid earth and direct tidal signals are routinely reduced from the observations during the

gravity field estimation, via use of models. These models contain errors, which are difficult to be accu-

rately quantified. We assessed the impact of ocean tides model errors, as the tidal model with the largest

contribution to the error budget. The difference of two independently produced tide models (GOT4.7

and EOT08a) was taken as an estimate of their error behavior. The model discrepancies are indirectly
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propagated into the gravity field solution by using one model to generate the “true”, and the other the

“reference” observations (Table 4.3). The GOT4.7 model is an empirical ocean tide model (from the

GOT series (Ray, 1999)) based on altimetric data from missions such as TOPEX/POSEIDON, Jason-1,

ERS and GFO. The EOT08a model (Savcenko and Bosch, 2008) is also an empirical ocean tide model,

with corrections to the FES2004 model based on analysis of 15 years of altimetric data. As shown in

Fig. 4.6.3 top-left, the retrieval error due to the ocean tide model errors are quite significant.



Chapter 5

Gravity field processing with enhanced

numerical precision

Future gravity satellite missions of a LL-SST-type expect to use the state-of-the-art technology for the

inter-satellite measuring unit; namely laser interferometry. In Sec. 4.6, the error budget analysis revealed

that gravity field processing with LL-SST measurements from a laser interferometer delivers results

at the limits of processing accuracy. It was also demonstrated that all other error sources are by far

larger contributors to the error budget. Already on the GRACE-FO mission scheduled to launch in

August 2017 (Flechtner et al., 2014a), an LRI will complement the KBR instrument. However, LRI’s

enhanced accuracy might prove redundant, in the presence of processing limitations and other sources

of error. Those limitations have to be dealt with and be taken into account in designing NGGMs. For

this purpose, Chapters 6, 7 analyze the treatment of other error sources during gravity field processing,

towards a better exploitation of the laser precision. This section focuses on overcoming the numerical

accuracy constraints, when it comes to processing of laser measurements. The results are based on the

investigations performed in Daras et al. (2014).

5.1 Concept of enhanced numerical precision

In an ideal error-free scenario, the error budget will be dominated by processing errors which present

themselves as linearization errors, numerical integration errors, errors of the a priori values and round-

off errors among others. Apart from the imprecise a priori values, all other sources of processing errors

are increased by the presence of round-off errors at arithmetic operations. Round-off errors could be a

limiting factor when working with very precise measurements such as inter-satellite ranges measured

with a nm precise laser interferometer. Arithmetic operations with ranges performed with standard dou-

ble precision processing will exhibit round-off errors at the 15th significant digit (9th digit after the

decimal point) given an inter-satellite distance on the order of 105m. There lies the accuracy limit of a

nanometer precise laser interferometer. The product after the arithmetic operation is therefore already



62 5 Gravity field processing with enhanced numerical precision

contaminated with round-off errors and the full capability of the laser interferometer remains unexplored.

Moreover, the round-off errors accumulate with the calculations and the result deviates further from the

“truth” value.

A solution at this point would be to explore the benefits that processing with extended precision can

offer. In computer science, precision of a numerical quantity is measured in bits, or alternatively, in deci-

mal digits. Extended precision provides a greater precision through a wider exponent range compared to

the basic floating-point formats. Floating-point number representation specifies the encoding of a num-

ber as a string of digits that can be used by computers. Double precision is the basic floating-point format

which is nowadays commonly used on PCs. According to the IEEE 754 standard, double precision oc-

cupies 8 bytes (64 bits) in computer memory from which the sign bit requires 1 bit, the exponent width

11 bits and the significand precision 52 bits. The significand is the part of the floating-point number that

consists of the significant digits. A greater precision than double, can be achieved by means of double-

extended, double-double and quadruple precision. The double-extended precision format is supported

by some processors (i.e. IA32, x86-64 and Itanium) and it occupies 80 bits with a 64-bit significand.

Quadruple precision is a format that occupies 16 bytes (128 bits) in computer memory from which the

sign bit requires 1 bit, the exponent width 15 bits and the singificand precision 112 bits. This is trans-

lated to a 33 to 36 significant decimal digits precision, where for double precision that ranges between 15

and 17. An even greater precision by demand, can be achieved by the arbitrary precision floating-point

arithmetic, where the variable-length significands are sized depending on how the calculation proceeds.

In Ettl (2013), special libraries were used in order to allow for the accuracy of numerical solutions of the

equations of motion to be a selectable option.

In this study, we chose to incorporate quadruple precision in our software, even though that might be

an overshooting of the problem. Our choice was made for the sake of simplicity, as it was directly appli-

cable in our software which comprises Fortran subroutines. We conducted also some other experiments

with arbitrary precision arithmetic which proved to be computationally less efficient. A version of our

software (see Sec. 5.2) introduces a hybrid processing scheme, which uses double and quadruple preci-

sion in different parts of the processing chain. Since both double and extended (quadruple) precision are

used, we use the term enhanced precision to describe the processing accuracy.

In case of processing with quadruple precision, due to the precision boost to 33 significant digits,

round-off errors will manifest themselves at a much further digit, allowing precise calculations with

laser measurements. Fig. 5.1.1 demonstrates this example for ranges measured with KBR and laser,

considering an inter-satellite distance of approximately 105km. It is obvious that round-off errors are

much more harmful in case of laser measurements. A useful remark could also be that a range-rate

observation holds more digits after the decimal point than a range, due its smaller quantity. That allows

for more precise calculations during the reduction of the observations, which is a subtraction of two large

numbers.
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Figure 5.1.1: Exhibition of round-off errors at arithmetic operations with ranges for double and quadruple
precision

5.2 Usage of enhanced numerical precision in the gravity field processing

chain

As described in Sec 3.1, our processing scheme can be divided into three main individual parts; the orbit

simulation, the setup of normal equations (NEQs) and the combination/solution of NEQs. In order to

take advantage of the benefits that quadruple precision offers, we created two more main versions of our

simulator (Table 5.1) in addition to the standard version:

Version 1 (DP)

Version 1 is the standard version where double precision (DP) is being used at all stages. For the sim-

ulation of the dynamic orbits we use the highest level of absolute accuracy for the integration (10−8m).

Version 1 was used for all the simulations performed in Chapters 4, 6 and 7.

Version 2 (EP)

Version 2 of the simulator uses double and quadruple precision in different parts of the processing.

Therefore, we call the processing with Version 2, processing with enhanced precision (EP). The orbit

simulation part now performs in quadruple precision, giving us the opportunity to raise the absolute

accuracy level to 10−15m. The second processing part “Setup of NEQs”, where the system of equa-

tions is formulated through the functional model, performs in quadruple precision until the point where

computationally expensive matrix-to-matrix multiplications take place. At this point, highly optimized

linear algebra libraries BLAS/LAPACK are called to perform the operations for computing the reference

parameters r12
0 , ρ0 and ρ̇0, for reasons of computational efficiency. Since BLAS/LAPACK libraries
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work only in double precision arithmetic, our quadruple precision arguments experience a cut-off and a

rounding to double precision before they enter those subroutines. The big advantage is, that until this

stage quadruple precision has been maintained. This means that all the quantities in Eq. (3.9) including

r12
A

, r12
B

and f12 used as input for the computation of the reference parameters are computed in quadruple

precision. This results in a much smaller accumulation of round-off errors from previous calculations,

compared to double precision processing. From that point onward, the matrix-to-matrix operations with

BLAS/LAPACK libraries are performed in double precision and the NEQs are saved in this format ac-

cordingly. The last processing part “Combination/Solution of NEQs” performs completely in double

precision, since the BLAS/LAPACK libraries are used extensively.

Version 3 (QP)

Version 3 of the simulator performs completely in quadruple precision (QP). To achieve this, we replaced

BLAS/LAPACK libraries with a special version of linear algebra libraries working in quadruple precision

from the Numerical Algorithms Group (NAG).

In order to investigate more thoroughly the effect of quadruple precision at the different stages of the

processing, an alternative of Version 1 and 2 was generated (Table 5.1):

Version 1 (alternative)

This version differs from Version 1 only in part of orbit simulation. The dynamic orbits are simulated in

quadruple precision with an absolute accuracy level equal to 10−15m. This version was created in order

to explore the benefits of using very precise simulated orbits as computational points for the reference

values r0 and ρ0.

Version 2 (alternative)

This version differs from Version 2 only at the part of orbit simulation. The dynamic orbits are simulated

in double precision with an absolute accuracy level equal to 10−8m. This version was created in order to

explore the benefits of using enhanced precision at the stage of setting up the NEQs.
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Versions Orbit simulation Setup of NEQs Combination/Solution
of NEQs

Version 1
(DP)

Double precision
abs. accuracy
10−8m

Everything including
BLAS/LAPACK libraries
in double precision

Everything including
BLAS/LAPACK libraries
in double precision

Version 1
Altern.

Quad. precision
abs. accuracy
10−15m

Everything including
BLAS/LAPACK libraries
in double precision

Everything including
BLAS/LAPACK libraries
in double precision

Version 2
(EP)

Quad. precision
abs. accuracy
10−15m

Everything in quad.
precision except for
BLAS/LAPACK libraries
in double precision

Everything including
BLAS/LAPACK libraries
in double precision

Version 2
Altern.

Double precision
abs. accuracy
10−8m

Everything in quad.
precision except for
BLAS/LAPACK libraries
in double precision

Everything including
BLAS/LAPACK libraries
in double precision

Version 3
(QP)

Quad. precision
abs. accuracy
10−15m

Everything
including NAG libraries
in quad. precision

Everything
including NAG libraries
in quad. precision

Table 5.1: Different versions of the simulator

5.3 Benefits of processing with enhanced numerical precision

This section is dedicated to investigations concerning the impact of processing with different numerical

accuracies to the gravity field recovery. At first, the effect of processing with enhanced precision in

different parts of the gravity field processing chain is analyzed. For this purpose, an error-free scenario

was chosen for the simulations. The first part of the simulations is the dynamic orbit determination. As

discussed in Sec 3.3 the quality of the satellite orbits plays a crucial role for the precision of the gravity

field retrieval. In a simulation environment, the orbits are used implicitly as computational points for

the computation of the reference parameters, as well as explicitly, for the computation of the HL-SST

and LL-SST pseudo-observations. In real processing, the HL-SST and LL-SST are provided by external

measurements. The kinematic orbits though, being erroneous, cannot be directly used for the estimation
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of reference parameters. Especially in case of the LL-SST part, the precise inter-satellite measurements

would be severely contaminated by the reduction of the erroneous reference values. In this case, a

solution could be to use smoother dynamic orbits instead of the kinematic orbits for the estimation of the

reference parameters. Another solution would be to use the kinematic orbits as starting evaluation points

(r(τ′) in Eq. 3.9) and let an iterative process through the functional model lead to more accurate values.

Mayer-Gürr (2006) gives a general solution to the problem, by establishing a gradient correction term to

the functional model, which is estimated by a static gravity field of a very small expansion (n=2). All

the above solutions have in common the constraining of the system towards a priori known gravity field

models.

In order to keep our error-free scenario unaffected from inaccuracies of external measurements, we

assumed “perfect” HL-SST and LL-SST pseudo-observations using the most precise orbits simulated

with Version 2 in quadruple precision. This was not the case with the simulations of Sec. 4.6 which

were completely performed with Version 1 of the simulator, and the pseudo-observations were generated

using orbits simulated in double precision. For exploring the benefits of enhanced precision processing

at the computation of the reference values, we used as computational points error-free orbits simulated

with Version 1 and 2 of the simulator, which will be called “reference orbits” from now on. Simulations

were performed using ranges and range rates individually as an observable type.

Examining the pre-fit residuals of the “observed” (e.g. ρ and ρ̇) minus “reference” (e.g. ρ0, ρ̇0) val-

ues gives always a good indication for the quality of the processing. The spectral analysis of the pre-fit

residuals, helps to distinguish the frequencies that are affected by specific error sources, and to draw con-

clusions for their contributors to the system noise budget. Fig. 5.3.1-top depicts the ASD of the pre-fit

residuals covering one month of data, and Fig. 5.3.1-bottom the corresponding DDA in geoid heights,

for the inter-satellite ranges and range rates of the LL-SST part. The blue and cyan curves are simu-

lated with the alternative versions 1 and 2. Comparing blue with red and green with cyan curves, shows

the improvement at the computation of reference values by using precisely simulated reference orbits

processed with Version 2. Comparing blue with green and red with cyan curves, shows the improve-

ment stemming from computing the elements of the design matrix with enhanced precision (Version 2).

Processing with the alternative Version 1 (blue curve), produces error levels that are considerably lower

compared to Version 1 (red curve). This improvement stems from the use of reference orbits simulated

at a higher precision. Processing with the alternative Version 2 (cyan curve), produces error levels that

are considerably larger compared to Version 2 (green curve), and at the same level with Version 1 (red

curve). The gain of processing with enhanced precision is, therefore, diminished by the imprecise orbits

simulated with double precision. The afore-mentioned findings are true both for ranges and range rate

observable types. Through these comparisons, it is evident that the precision of the reference orbits is

a crucial parameter that could pose restrictions in exploiting the enhanced precision of the calculations

to its full extent. It is also worth noticing that for the inter-satellite ranges there is an accuracy limit of

10−10m/
√

Hz which appears like a “white” noise of that amplitude on the ASD of the pre-fit residuals.

This occurs in the best case scenario (green curve) where all simulation parts are processed with enhanced
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Figure 5.3.1: Top: ASD of pre-fit residuals for the inter-satellite ranges ρ (top-left) and range rates ρ̇
(top-right) of d/o 120 solutions. Bottom: The corresponding DDA in geoid heights. The legend provides
information on the simulator version (see Table 5.1) which was used.

precision by Version 2 of the simulator. The reason behind this, is the rounding from quadruple to double

precision that takes place for the arguments entering the LAPACK/BLAS linear algebra libraries during

the computation of the reference values at the second part “Setup of NEQs” of the processing. Therefore

despite delivering a much more precise solution, the corresponding ASD from processing with Version 2

does not represent the true spectra of the residuals. However, it has a big advantage compared to Version

1, as demonstrated in the following.

Fig. 5.3.2 depicts the closed-loop simulation results in terms of geoid height differences for Versions

1 and 2. For both cases, “perfect” observations were assumed, using the most precise orbits simulated

with Version 2. The reference orbits were simulated according to the versions they are subjected to

(i.e., (a) with Version 1, and (b) with Version 2). Processing with enhanced precision delivers a much

more precise solution both for ranges and range rates, revealed by the geoid height difference plots.

The standard deviation of the geoid height differences in case of ranges improve from 1.2 × 102µm to

5.4 × 10−1µm, and in case of range rates from 3.4 × 101µm to 2.1 × 10−2µm. It is also worth noticing
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Figure 5.3.2: Closed-loop geoid height differences of d/o 120 error-free simulations for ranges (top) and
range rates(bottom).

that the closed-loop discrepancies shown in Fig. 5.3.2 follow a normal distribution, which is a result of

the processing errors. The computational time when processing with Version 2 in enhanced precision

increased by a factor of 3 compared to Version 1, which is still considered within reasonable levels for

full scale gravity field processing.

Version 3 was used for performing only a simulation run for comparison reasons. Due to computa-

tional time issues caused by the very expensive computations in quadruple precision, a resolution with

max d/o 70 was chosen for this simulation. Fig. 5.3.3 and Fig. 5.3.4 summarize the results of a d/o 70

error-free scenario for ranges, from all three versions of the simulator. A relative improvement between

the versions explained by the gain in numerical precision, can be easily visualized. Version 2 performs

approximately 103 times better than Version 1, when Version 3 104 times better than Version 2 and thus

107 better than Version 1. Moreover, one can notice a similar error behavior scaled roughly by a factor of

106 between Version 1 and Version 3, in terms of ASD of pre-fit residuals and DDA (Fig. 5.3.3). In spite
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of the significant improvements that it delivers, Version’s 3 great computational demands would place

it as an unfavorable candidate for real gravity field processing, where computations are elaborated in a

more complex environment. It is therefore presented in this study for reasons of relative comparisons of

the gravity field retrieval in the presence of processing with extended precision, and not as a proposal for

real processing of future satellite gravity field missions.
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Figure 5.3.3: ASD of LL-SST pre-fit residuals (left) and DDA in geoid heights (right) of d/o 70 solutions
for ranges.

After the error-free simulations, it is investigated if the enhanced numerical precision processing can

contribute to a reduction of the error level in the presence of laser interferometer errors. The results

from an error-free and a laser error case processed with Version 1 and 2 of the simulator are presented

in Fig. 5.3.5 for ranges, and 5.3.6 for range-rates. From a quick visualization of the pre-fit residual ASD

performed with Version 1 (Fig. 5.3.5 and Fig. 5.3.6 - left) it is evident that the error curves from the

laser noise case (in black), at the most significant part of the bandwidth, coincide with the ones from the

error-free case (in blue). The black curves exceed the blue ones only in the higher frequencies. This does

not seem to be transferred to the final result of the gravity field, as the black curves of the corresponding

DDA values of the closed loop simulations almost coincide with the blue ones. This indicates that the

processing errors are at least equal or larger than the errors resulting from the laser noise propagation. In

other words, measuring with a laser interferometer may deliver more accurate gravity field solutions than

the system accuracy could handle. This hypothesis is confirmed by the simulation results from Version 2

(Fig. 5.3.5 and 5.3.6 - right). The system accuracy boosted by the enhanced precision processing, results

in error-free curves that are substantially lower than the laser error curves. Therefore, contrary to Version

1, processing with Version 2 in presence of laser errors can efficiently handle precise laser inter-satellite

measurements and take full advantage of their accuracy.

Our investigations concern an ideal case scenario which remains unaffected by external error sources

other than the inter-satellite laser sensor errors. In a realistic scenario where imprecise kinematic orbits

are used, the improvements from processing with enhanced precision could be severly moderated. How-
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Figure 5.3.4: Closed-loop geoid height differences of d/o 70 error-free closed-loop simulations for ranges

ever, there are cases were processing with enhanced precision can be indeed helpful, or even crucial for

a full exploitation of the laser accuracy. For example, in case of employing dynamic orbits as reference

orbits for the computation of the reference values of the LL-SST part, processing with enhanced preci-

sion offers the advantages already discussed. In case of using kinematic orbits as starting Taylor points

in an iterative procedure for estimating the reference values, enhanced precision is expected to minimize

the linearization errors and lead to a faster convergence. Even when the gradient correction approach

(Mayer-Gürr, 2006) is applied, the error levels from standard precision processing can still be larger

than the error levels from the laser error propagation. Enhanced precision processing could therefore

also in that case be necessary. On the other hand, the sum of all other error sources (Sec. 4.6) will still

lead to larger retrieval errors than the laser errors. Nevertheless, the usage of better metrology, more

advanced SFF constellations and improved gravity field processing techniques, may establish the usage
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of enhanced precision gravity field processing for NGGMs as a necessity.
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Figure 5.3.5: ASD of LL-SST pre-fit residuals (top) and DDA in geoid heights (bottom) of d/o 120
solutions for ranges. Left: Processing with double precision (Version 1), right: processing with enhanced
precision (Version2).
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Figure 5.3.6: ASD of LL-SST pre-fit residuals (top) and DDA in geoid heights (bottom) of d/o 120
solutions for range rates. Left: Processing with double precision (Version 1), right: processing with
enhanced precision (Version2).



Chapter 6

Methods of noise reduction

In Sec. 4.6 the impact of all noise sources in gravity field retrieval was analyzed. This section is dedicated

to investigations concerning the treatment of propagated noise for NGGMs. Main focus is the handling of

correlated noise such as the colored noise of sensors. Treatment of other noise sources such as temporal

aliasing, is addressed in Chapter 7.

6.1 Frequency dependent data weighting

NGGMs will make use of satellite data that will most probably be corrupted by correlated noise. On-

board sensors such as the accelerometers and the laser instrument for example possess noise behavior

which is frequency-dependent and can be analytically approximated by the PSD curves shown in Sec.

4.5. The time series of their measurements is therefore corrupted with time-correlated noise which

contaminate other quantities during the gravity field estimation.

Real satellite data contain noise which can be highly non-stationary, i.e. its stochastic properties

change with time. LEO satellite orbits with an accuracy varying with time are a typical example of

non-stationary noise. Moreover, jumps or spikes at the kinematic orbits contribute even more to the non-

stationarity. In Ditmar et al. (2007), a methodology for estimating a proper weighting matrix that can be

applied to data with gaps and non-stationary behavior, is presented. Since the dependency of noise on

frequency is not known a priori, it is estimated on the basis of a posteriori residuals (i.e. the differences

between the original and adjusted observations). In our simulation environment, uninterrupted orbits with

a white noise behavior are used for reasons of simplification. Noise stemming from the behavior of the

accelerometer and laser instruments are also assumed to be stationary, and therefore can be represented

by a Power Spectral Density (PSD). As a result, quantities such as residuals, will also have a stationary

behavior.

In Koch et al. (2010), covariance matrices are estimated in multivariate models by estimated auto-

and cross-covariances. In our simulations, we assume that different components such as the 3-D position

differences and the inter-satellite distance, can be considered uncorrelated with each other. The covari-
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ance matrix will therefore contain only auto-covariance values of the residuals. Under the assumption

that the data contain stationary noise, their covariance matrix is of a Toeplitz kind consisting of auto-

covariance vectors. The elements of an auto-covariance vector with index k consist of the covariance ck

between epochs i and i± k of the residual time series :

ck = E[r jr j±k ], (6.1)

where E[·] is the expectation operator; r j and r j±k are the residual values at two epochs separated by lag

k. Assuming ergodicity of the noise realization (i.e. residuals), the ensemble average can be replaced

by the time average. Eq. (6.1) can be therefore turned into a practical formula for estimating the auto-

covariance vector :

ck =
1
nk

∑

i

r jr j±k (0 ≤ k ≤ na), (6.2)

where na is the maximum lag for the estimated auto-covariance, and nk is the number of pairs of elements

used in the estimation of the k−th auto-covariance element. The covariance matrix of a Toeplitz kind

can then then be fully assembled from the auto-covariance vector :
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. (6.3)

The weight matrix P can be computed as the inverse of the covariance matrix :

P = C−1. (6.4)

The gravity field modeling approach used in this study, divides the orbit to short arcs with boundary

values that are parameterized together with the gravity field coefficients. The weight matrix P has there-

fore dimensions equal to the number of epochs ns inside a short arc. The residual time-series however,

contain low-frequency noise components that influence values exceeding the length of a short-arc, even

if the boundary value points at the beginning and end of a short arc are set up as unknown parameters.

In order to take into account those correlations, residual time series of size equal to na = j · ns (where j

an odd integer number) are considered as our noise realization. The corresponding covariance Ca and

weight Pa matrices are of a na × na dimension. The final weight matrix P is taken then as the inner

central ns × ns block of the larger Pa matrix. It contains auto-covariance values with a maximum lag of

na, including correlations of ( j − 1)/2 “past” (i.e. before the central) and ( j − 1)/2 “future” (i.e. after

the central) points. In Fig. 6.1.1 the procedure of extracting weight matrix P (Fig. 6.1.1 left) out of

weight matrix Pa (Fig. 6.1.1 top-right) is demonstrated. For reasons of comparison, a weight matrix



6.1 Frequency dependent data weighting 75

computed from the residual time series of one arc is also shown (Fig. 6.1.1 bottom-right). It is evident

that this weight matrix contains smaller auto-covariance values compared to those of the extracted matrix

P, which is explained from the larger length of the time series.

Figure 6.1.1: Weight matrix Pa (left) and extracted weight matrix P (top-right) used for data weighting.
Pa corresponds to time series of a 21-arc period, while P to 1 arc (30 min.). A weight matrix computed
directly from the residual time series of 1 arc is also shown (bottom-right).

Under the assumption of normally distributed observations, the estimated covariance matrix is pos-

itive definite. The weight matrix for the LL-SST part of the NEQ system Pll−sst , is computed from Eq.

(6.4) using the method described above. For the HL-SST part, weight matrix Phl−sst is assembled from

components of the 3 individual weight matrices computed from the residuals along the X1, X2 and X3

directions of the TRS. Assuming zero correlations between the individual directions of the 3-D position
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differences for simplification purposes, Phl−sst is a symmetric matrix computed as :
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with px
k
, p

y

k
and pz

k
the components of the weight matrices for the X1, X2 and X3 directions of the TRS.

For the HL-SST and LL-SST NEQs to be accumulated into a combined system of NEQs, it is also

assumed, for reasons of simplification, that they contain measurements that are uncorrelated with each

other.

6.2 Empirical parameterization

NGGM will suffer from systematic noise as a result of the error sources described in Sec. 4.6. Part of

this systematic noise can be compensated by proper stochastic modeling via frequency-dependent data

weighting as explained in Sec. 6.1. However, mis-modeling effects and noise of systematic behavior

will still be present, even after a proper data weighting has been performed. The sum of those effects is

growing with the arc length. The short-arc approach used in this study, by setting up the boundary values

at the beginning and end of an arc as unknowns, contributes to the reduction of this error accumulation.

This co-parameterization classifies the short-arc approach into the reduced-dynamic strategies for gravity

field retrieval. The functional model can be further augmented by introducing empirical accelerations.

Together with the boundary points of an arc, they constitute the local parameters to be estimated (see

Sec. 3.6.1). Local parameters are valid only for a short period of time (e.g. hourly, time period of a short

arc), in order to compensate mis-modeling errors or modeled effects that change rapidly.

Empirical parameterization can be very helpful in cases where the main characteristics of an error

pattern have an expected behavior. For example, noise related to spatial sampling accuracy or geometry

such as orbit inaccuracies and temporal aliasing, result in noise accumulation at the end of the each orbit

revolution. Fig. 6.2 depicts the monthly ASD of pre-fit residuals for the inter-satellite ranges of a d/o

120 solution, considering all error sources. The mis-modeling effects are accumulated and manifested

as peaks at the frequencies of 1 cycle-per-revolution (1-cpr) and its multiples. For this reason, a very
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Figure 6.2.1: ASD of pre-
fit residuals for the inter-
satellite ranges ρ of a d/o
120 solution, considering
all error sources.

common practice is the use of trigonometric sine and cosine functions to model the periodicity of the

accelerations. Considering a constant term as well, the 1-cpr empirical accelerations can be modeled as :

f = E(a0+a1 sin ν+a2 cos ν), (6.6)

with a0 being the constant acceleration bias vector, a1 and a2 the 1-cpr coefficient vectors and ν the true

anomaly of the satellite orbit. The vector of empirical accelerations is typically specified in the satellite-

fixed reference frame, which is then transformed to the CRF by the transformation matrix E computed

by Eq. 3.2. Empirical parameterization may also contain a linear term. Depending on the error character-

istics of the miss-modeled forces, empirical accelerations can be modeled differently for each occasion.

Gravity field processing of GRACE data, processed by the science data system centers such as the Center

for Space Research (CSR), employ co-estimation of empirical biases and accelerometer scale factors in

their official Release 05 solutions (Bettadpur, 2013). Finding the optimal parameterization choice is an

empirical procedure that does not come without shortcomings. Even though it can drastically reduce the

total error level, it can absorb real gravity signals. Occasionally, empirically estimated parameters may

also introduce correlations and coupling effects with other measurement errors. Their modeling should

therefore be handled with care and over-parameterization be avoided.

6.3 Simulation results of processing with noise-reduction methods

The error sources that are expected to influence a NGGM were defined in Sec. 4.6. In this section,

methods for reducing their effect are applied and the results are demonstrated. All simulations were per-

formed with Version 1 (DP) of the simulator. The solutions refer to a monthly averaged “AOHIS”product.

Therefore, all error sources have been taken into account, except for the aliasing effects stemming from

the uncertainties of a de-aliasing “AO” product, which would be used in case of a “HIS” retrieval. The
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treatment of temporal aliasing effects is addressed extensively in Chapter 7. The chosen orbit for the

simulations is the same one used for the error budget analysis performed in Sec. 4.6. Table 6.1 gives

Name Processing method

Noise-Free (NFC) Nominal

Noise Case 1 (NC_1) Nominal

Noise Case 2 (NC_2) Weighting

Noise Case 3 (NC_3) Emp. Param. arc-wise bias

Noise Case 4 (NC_4) Emp. Param. arc-wise linear

Noise Case 5 (NC_5) Emp. Param. arc-wise 1-cpr + bias

Noise Case 6 (NC_6) Weighting + Emp. Param. arc-wise linear

Table 6.1: Details of noise reduction processing. The solutions refer to a monthly mean of “AOHIS”
signal. Noise-Free case already contains temporal aliasing errors due to under-sampling of “AOHIS”
signal.

a description of the methods used for reducing the propagated noise. Term “Nominal” refers to a pro-

cessing without any error handling. Simulations with individual, as well as combined utilization of

frequency-dependent data weighting and empirical parameterization have been performed. Several cases

of empirical parameterization have been examined. Each of them includes an arc-wise modeling of either

a bias, linear, or 1-cpr and bias term.
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Figure 6.3.1: DDA in
geoid heights of d/o 120
solutions. Blue: Noise-
Free Case which contains
only the effect of tempo-
ral aliasing (NFC). Red:
NC_1 - nominal, Green:
NC_2 - with frequency-
dependent data weighting
(see Table 6.1).

The weight matrix was computed from a noise realization of pre-fit residuals that was stationary.

For the stationarity to hold, the residuals contained only the system processing errors and the effect of
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Figure 6.3.2: Formal errors (top) and coefficient differences (bottom) of d/o 120 solutions. Left: NC_1 -
nominal, right: NC_2 - with frequency dependent data weighting (see Table 6.1)

propagated accelerometer and laser noise. The weight matrix was generated from a time series consisting

21 short arcs, as described in 6.1. It was then applied to the data including all error sources (NC_2 -

Table 6.1). Fig. 6.3.1 depicts the DDA in geoid heights for the noise case with (NC_2) and without

(NC_1) data weighting. A Noise-Free case (NFC) shown for reasons of comparison, already contains

the temporal aliasing effects due to under-sampling of "AOHIS" signal. When applying weighting, an

improvement is evident over the whole bandwidth. Especially at the lower and higher degree coefficients

the improvement is larger. An error accumulation is experienced near d/o 50 and d/o 80. The first

peak near d/o 50, could be related to the expansion limit (also d/o 50) of the two different models used to

simulate the uncertainties of an ocean tide model. The triangle plot of coefficient differences in Fig. 6.3.2

clearly shows this effect near the coefficients of degree 50. Overall, data weighting succeeds in absorbing

a large part of the propagated noise, and results in a similar relative improvement for the formal errors

and the coefficient differences.

Fig. 6.3.3 depicts the DDA values of solutions processed with co-estimation of empirical accelera-

tions. In all cases, empirical parameterization leads to a small error reduction of the higher coefficients

above d/o 90. In the rest of the bandwidth, it not only fails to successfully absorb error, but addition-

ally introduces non-realistic signals that lead to a degradation of the results at the low-to-intermediate

coefficients until d/o 50. The biggest change in the error spectrum is achieved with the 1-cpr-plus-bias

arc-wise parameterization (6.3.3 bottom-left), where large improvements at higher degree coefficients are

manifested together with degradations at the lower. This considerably larger improvement stems from

a better approximation of the 1-cpr functions to the higher frequency part of the noise. Similar conclu-
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Figure 6.3.3: DDA in geoid heights of d/o 120 solutions. Top-left: NC_3, top-right: NC_4, bottom-left:
NC_5, bottom-right: NC_6 (see Table 6.1).

sions can be drawn by inspecting the triangle coefficient difference plots of Fig. 6.3.4. Comparing Fig.

6.3.2 bottom-left with Fig. 6.3.4-bottom-left, an error reduction at the coefficients of high degree and

low order can be observed, along with an error increase at the sectorials. In all cases, there is an evident

weakness of the empirical accelerations to absorb noise of an intermediate-to-long wavelength behav-

ior. This could be related to the applied short-arc approach for gravity field modeling. The empirical

accelerations are updated every 30 min together with the boundary conditions of the short-arc. However,

noise included in the observations such as accelerometer errors, has a much longer wavelength behavior.

It is therefore unlikely for the long wavelength characteristics of noise to be accurately described by

empirical functions of that duration. On the other hand, high frequency effects can be partially modeled

by empirical accelerations of a short-arc period, which result in improvements at the higher coefficients

bandwidth. This could be helpful, in case where empirical parameterization is applied together with data

weighting. The bottom-right plot of Fig. 6.3.3 shows the results from a case where linear empirical

parameterization is employed together with frequency dependent data weighting (NC_6). The retrieval
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error differs from that of NC_2, by a small degradation at the lower degree coefficient bandwidth until

d/o 60, and an improvement at the higher degree coefficients.

-100 -50 0 50 100

20

40

60

80

100

120

S  ←  order(m)  → C 

de
gr

ee
 n

 

 

-13

-12.5

-12

-11.5

-11

-10.5

-10

-100 -50 0 50 100

20

40

60

80

100

120

S  ←  order(m)  → C 

de
gr

ee
 n

 

 

-13

-12.5

-12

-11.5

-11

-10.5

-10

-100 -50 0 50 100

20

40

60

80

100

120

S  ←  order(m)  → C 

de
gr

ee
 n

 

 

-13

-12.5

-12

-11.5

-11

-10.5

-10

-100 -50 0 50 100

20

40

60

80

100

120

S  ←  order(m)  → C 

de
gr

ee
 n

 

 

-13

-12.5

-12

-11.5

-11

-10.5

-10

Figure 6.3.4: Coefficient differences of d/o 120 solutions. Top-left: NC_3, top-right: NC_4, bottom-left:
NC_5, bottom-right: NC_6 (see Table 6.1).

Fig. 6.3.5 depicts the ASD values of post-fit residuals for the inter-satellite ranges ρ. The post-fit

residuals result from the estimated gravity field solution and contain the effect of the applied method

for noise reduction. The local parameters are estimated after the solution of the NEQ system by means

of back-substitution (Fig. 3.6) and are explicitly used for estimating the post-fit residuals. In case of

NC_2 they include only the arc boundary values, whereas in case of NC_3, NC_4, NC_5, NC_6 also the

empirical accelerations. The results strengthen the conclusions made by interpreting Fig. 6.3.3, where the

use of empirical accelerations resulted in improvement at the shorter wavelengths and degradation at the

longer. For the NC_4 and NC_5 cases, the error magnitude of 1-cpr resonances and their multiples is also

reduced. However, the biggest improvements are experienced in frequencies larger than 4 mHz for both

cases NC_2 and NC_6, where the frequency dependent data weighting is employed. This frequency band

is particularly sensitive to important gravity field characteristics. Compared to case NC_5, case NC_6

exhibits improvements at the 1-cpr terms, as a result of additionally employing the linearly estimated

empirical accelerations.

Fig. 6.3.6 depicts the results of the noise reduction methods applied, in terms of closed-loop geoid

height differences. The plots show differences of the solutions at the maximum resolution of d/o 120.

The cases processed with estimated empirical accelerations show mild improvements with a similar error

pattern governed by the ground-tracks of the satellites. On the other hand, big improvements are obtained

by processing with data weighting. The standard deviation values of geoid height differences improve
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Figure 6.3.5: ASD of post-fit residuals for the inter-satellite ranges ρ of d/o 120 solutions (see Table 6.1).

from 6.45 cm in case of NC_1 to 0.52 cm and 0.44 cm in case of NC_5 and NC_6, respectively. The

error pattern is also drastically changed from ground-track based, to north-south oriented striping.

The investigations on methods of noise reduction performed in this section, revealed great improve-
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Figure 6.3.6: Closed-loop geoid height differences of d/o 120 solutions. Top: NC_1 (left), NC_3 (right).
Middle: NC_4 (left), NC_5 (right). Bottom: NC_2 (left), NC_6 (right). Bottom figures have different
colorbar limits. Processing details available in Table 6.1.

ments when the proposed data weighting scheme is applied. On the other hand, the applied parameteri-

zation of empirical accelerations did not show the same efficiency in reducing the propagated noise. This

does not mean however, that empirical parameterization would not be helpful in gravity field process-

ing of NGGMs. Depending on the parameterization choices (i.e. analytical models, short/long periods,

axes used, e.t.c.), the effectiveness of empirically estimated accelerations in absorbing noise may vary.

In Beutler et al. (2010), the effect of stochastic pulses (instantaneous velocity changes) and piece-wise
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linear accelerations to the gravity field estimation is investigated. Some constraints on the magnitude

of those empirically estimated parameters are also considered. It is demonstrated that co-estimation of

empirical parameters leads to a reduction of the error levels, making their usage essential for the estima-

tion procedure. Therefore, the employment of empirically estimated parameters depends strongly on the

applied gravity field retrieval method and on the nature of the noise present in the system. Finally, the

proposed strategy of noise reduction used for the investigations performed in Chapter 7, includes data

weighting together with arc-wise linear co-estimation of empirical accelerations.



Chapter 7

Treatment of temporal aliasing effects

This section addresses one of the key limiting factors for NGGMs, namely temporal aliasing. The effect

of this major error source was assessed for one near-polar pair in Sec. 4.6. Here, the mitigation of

temporal aliasing effect is assessed in the presence of a Bender-type constellation (Sec. 7.1), expected

to be operated for future satellite gravity missions. Errors due to temporal aliasing cannot be treated

by means of frequency dependent data weighting as introduced in Sec. 6.1, due to their deterministic

and non-stationary behavior. Sec. 7.2 investigates gravity field processing techniques that result in

a significant reduction of temporal aliasing effects. Those techniques are also applicable to current

LL-SST missions, but are specially beneficial for NGGMs with more complex SFF constellations. The

investigations performed in this section were performed in the framework of the “ESA-SC4MGV” study

(Iran Pour et al., 2015).

7.1 Temporal aliasing for NGGMs

NGGMs are planned to fly as SFF constellations that will lead to substantial improvements compared

to the single in-line SFFs used by missions like GRACE, and in the near future by GRACE-FO. SFF

constellations are expected to mitigate physical constraints related to sampling that lead to effects such

as temporal aliasing.

7.1.1 Benefits of a Bender-type SFF constellation

The advantages of a Bender-type SFF constellation compared to a typical polar pair GRACE-type SFF

are already mentioned in Sec. 4.2. Here, a Bender-type constellation with the orbital choices described in

Table 4.1 is processed and compared to the polar pair of its constellation. The simulations take all error

sources into account, except for errors of the de-aliasing models which do not apply when retrieving the

full “AOHIS” signal (see Sec. 7.1.2). The retrieval period time-span was chosen equal to 11 days, which

is the duration of a full repeat cycle of the polar pair. According to the revised Colombo-Nyquist rule-

of-thumb (Weigelt et al., 2013), for solutions retrieved using near-polar orbits, the maximum resolvable
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Figure 7.1.1: DDA in
geoid heights of 11-day
d/o 120 solutions for a po-
lar pair and a Bender-type
constellation. All errors
included.

order of expansion is equal to the number of orbital revolutions in a repeat period, if the difference

between number of revolutions and number of nodal days is of odd parity. This is the case for the

near-polar orbit used for our investigations, which performs 15 orbital revolutions in one day. Thus, the

retrieval period of 11 days could theoretically deliver homogeneous gravity field solutions up to order

165. The maximum resolvable degree on the other hand, depends on observation technique, observation

noise and signal attenuation with altitude, having an impact on the SNR. However, we assume that a

homogeneous gravity field solution of d/o 120 and retrieval period of 11 days can be achieved with the

near-polar orbit we use for the simulations. The processing includes handling of the propagated noise,

with the strategy proposed in Chapter 6, which involves frequency-dependent data weighting and arc-

wise (i.e. 30 min) co-estimation of 3D linear empirical accelerations. The remaining errors represent

the combined effect of un-modeled propagated noise and temporal aliasing effects. Fig. 7.1.1 depicts the

DDA values for the polar pair and the Bender constellation. The addition of the inclined pair (Bender

constellation) results in improvements of one order of magnitude at almost the complete error spectrum,

except for the very low degrees (i.e. 0 ∼ 7). In case of the polar pair, the errors become larger than

the signal near degree 28, while for the Bender constellation near degree 63. This is translated into an

increase in maximum spatial resolution from 715 to 315 km.

The formal error estimates of the spherical harmonic gravity field coefficients and the closed-loop

coefficient differences, are depicted in the triangle logarithmic plots of Fig. 7.1.2. The solution using

the Bender constellation delivers a completely different error spectrum compared to the polar pair, where

the higher tesseral harmonics still dominate the error budget, but the error levels are much lower. More-

over, both the formal errors and the coefficient differences exhibit an increased error at specific tesseral

coefficients that resembles a “butterfly” pattern. This pattern is typical for Bender constellations due to

the lower inclination choice of the inclined pair, and is caused at the transition zone of higher latitudes
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where Earth’s sampling gradually changes from two pairs to one polar pair.
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Figure 7.1.2: Formal errors (top) and coefficient differences (bottom) of d/o 120 solutions. Left: Po-
lar pair, right: Bender SFF constellation. Processing includes all errors sources but de-aliasing model
inaccuracies.

7.1.2 Processing strategies for retrieval content

LEO satellites are generally affected by time-varying gravitational forces exerted from the underlying

mass distribution within the atmosphere, the ocean, Earth’s surface and interior. Typically, gravity field

processing of missions like GRACE employ background models to remove non-desirable signals from

the integrated observations. Such signals can be ocean and solid Earth tides, but also non-tidal high-

frequency mass variations that alias into the longer time retrieval periods. Those high-frequency varia-

tions are mainly induced by atmosphere and ocean and their effect is reduced in short time intervals by

use of de-aliasing models. As mentioned in Sec. 4.6, this study makes use of the de-aliasing models

from Dobslaw et al. (2013) with a 6-hourly time resolution, along with an empirical error estimate of

those models. Therefore, 6-hourly estimates of atmosphere and ocean non-tidal signals would typically

be subtracted from the observations during the gravity field processing. Finally, the retrieved gravity

field solutions contain the integrated effect of hydrology, ice and solid Earth (else “HIS”), which is the

final product of gravity field processing with GRACE data.

In this study, it is investigated to what extent a retrieval of the full “AOHIS” signal is feasible in the

case of NGGMs. The motivation behind this idea is the scientific importance of recovering the full spec-

trum of non-tidal geophysical processes that comprise system Earth. In the following sections, the ability

of a Bender constellation for retrieving the full “AOHIS” signal is investigated. It is expected, that an
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increase in error isotropy, temporal and spatial resolution together with an appropriate parameterization

(Sec. 7.2) could allow for the rapid sub-weekly changes of the atmosphere and ocean to be successfully

recovered and then assigned into a longer-period average solution. Solving for the full “AOHIS” signal

requires a crucial change of the gravity field processing strategy that results in a different error tree. The

change concerns the usage of de-aliasing models, which are no longer necessary. This results in a gravity

field solution that is clean of de-aliasing model errors. On the other hand, temporal aliasing errors due

to under-sampling of “AOHIS” are more prominent than “HIS”. This counter-effect is quantified in Fig.

7.1.3-left for an 11-day solution of a Bender constellation. The solutions contain a relative weighting

between the HL-SST and LL-SST component by using σ0 values of 1cm and 50nm, respectively. The

blue and green curves represent temporal aliasing effects due to “AOHIS” and “HIS” under-sampling

correspondingly. The full “AOHIS” signal induces aliasing effects which are one order of magnitude

larger than for “HIS”. Errors due to de-aliasing model inaccuracies (magenta curve) are also signifi-

cantly larger than the “HIS” aliasing curves. However, they exceed the “AOHIS” aliasing errors only at

the lower coefficients until d/o 25. Fig. 7.1.3-right depicts the results considering all error sources of

each retrieval strategy, processed with data weighting and empirical parameterization. Although it con-

tains propagated noise, the blue error curve in Fig. 7.1.3-right is lower than in Fig. 7.1.3-left for the high

degree coefficients. This results from the error reduction method applied in the results of Fig. 7.1.3-right

compared to the simple relative weighting of Fig. 7.1.3-left. By visualizing Fig. 7.1.3-right, we can

conclude that the two strategies result in similar error levels. However, the “HIS” retrieval exhibits larger

errors at the lower coefficients until d/o 25, which could be attributed to the errors at the de-aliasing

“AO” models. This is confirmed by the higher error levels of the magenta curve compared to the blue

curve at the same coefficient bandwidth of Fig. 7.1.3-left, which proves that errors due to de-aliasing

“AO” model innacuracies, are more significant than errors due to “AOHIS” under-sampling. At the rest

of the bandwidth, the “AOHIS” retrieval shows larger errors, mainly caused by the larger aliasing effects

of “AOHIS” compared to “HIS”. It is interesting to notice however, that the two processing strategies

result in retrieval errors of a similar accuracy for “AOHIS” and “HIS” content. The retrieval errors of the

two strategies are re-examined in Sec. 7.3, where the method for reducing temporal aliasing effects has

already been applied.



7.2 Co-parameterization of low spatial resolution gravity field solutions at higher frequencies 89

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

degree n

G
eo

id
 h

ei
gh

t [
cm

]

 

 
AOHIS Signal
HIS Signal
AOHIS Aliasing
HIS Aliasing
De-aliasing ("AO")
model errors

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

degree n

 

 
AOHIS Signal
HIS Signal
AOHIS - All errors
HIS - All errors

Figure 7.1.3: DDA in geoid heights of 11-day d/o 120 solutions for a Bender-type constellation. Left:
Aliasing errors due to under-sampling signals of interest and errors at the de-aliasing “AO” models.
Right: All error sources included.

7.2 Co-parameterization of low spatial resolution gravity field solutions

at higher frequencies

This section investigates gravity field processing techniques that result in a reduction of temporal aliasing

effects at the final solution. The adopted processing strategy was first proposed by Wiese et al. (2011b)

and is going to be referenced as the Wiese approach from now on. According to this method, low resolu-

tion gravity fields are co-estimated at short time intervals together with the higher resolution gravity field

which is sampled at a longer time interval. By co-estimating gravity fields at shorter periods (e.g. daily),

the high-frequency information contained in them is taken into account. As a result, the aliasing effect

of those long-wavelength geophysical signals that have a period larger than twice the chosen sampling

period of the short-period gravity field modeling (Nyquist theorem), can be reduced. Consequently, the

maximum temporal resolution of the retrieved gravity fields, which were hampered by aliasing effects

when applying a classical parameterization, can be increased.

The estimation of n number of low spatial resolution gravity field solutions is achieved by including

their coefficients in the set of local parameters (i.e. boundary values and empirical accelerations) to be

co-estimated. Practically this leads to an extension of vector b́ by the lower gravity field coefficients of x̃

(see Eq. (3.52)) :

b́ext =
(

b1 · · · bJ | x̃1 · · · x̃L

)

, (7.1)

and an extension of matrix B́ with the corresponding elements of Ā :

B́ext =
(

B1 · · · BJ | Ā1 · · · ĀL

)

, (7.2)

where L the number of unknown coefficients contained in the low resolution solutions. The extended
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part of matrix B́ext is updated according to the chosen short-time sampling interval. Accordingly, the

vector of unknown gravity field coefficients x̃ is reduced to :

x̃red =
(

x̃L+1 · · · x̃M

)

, (7.3)

and the corresponding design matrix Ā to :

Āred =
(

ĀL+1 · · · ĀM

)

, (7.4)

with the number of unknown coefficients for the long-term average field x̃red being reduced to that of

the remaining higher degree coefficients H = M − (L +1). The local parameters b́ext are pre-eliminated

at short-time period basis as described in Sec. (3.6.2), forming a reduced system of NEQs. The n

reduced and full NEQs are both stored to be used at a later stage. As a next step, the reduced NEQs are

accumulated for the period of the longer-time solution, and the system is solved with LSA to obtain the

set of higher degree gravity field coefficients. Finally, the n reduced and full NEQs, together with the set

of higher degree gravity field coefficients, are used by means of back-substitution (Eq. (3.56)) in order to

obtain the n low degree resolution gravity field solutions. Concerning the lower part of the long-period

averaged solution, a weighted mean is computed by variance propagation of the n short-time solutions.

Fig. 7.2.1 illustrates the flowchart of Wiese parameterization. The main goal of Wiese parameterization

is to reduce temporal aliasing effects and improve the estimates of high d/o coefficients. At the same time,

it provides short-time gravity field estimates of low spatial resolution which are uncorrelated among each

other. These high-frequency solutions constitute a new by-product feasible with NGGMs, that could be

of a great value to the scientific user community. The choice of maximum expansion and estimation

period for the low resolution solutions, plays an important role for the reduction of temporal aliasing

effects in the long-term solution. The multivariate graph of Fig. 7.2.2 was used for consolidation of those

choices. Fig. 7.2.2-top-left is taken from Murböck (2015). The background pixeled values in greyscale

represent the “AOHIS” signal RMS per degree. Again, the revised Colombo-Nyquist was taken into

account like in Sec. 7.1.1. The maximum spatial resolution for the solutions depends on the combination

of the orbit configuration and the sensitivity of the measurement system. From the perspective of orbit

configuration, the blue curves in Fig. 7.2.2 represent the spherical harmonic degree of expansion (X-axis)

that corresponds to the mean gap evolution along the equator, w.r.t. the solution period (Y-axis). The red

curves represent the maximum gap evolution accordingly. The dashed curves stand for the polar-pair,

while the solid for the Bender constellation. The optimum choice for the maximum d/o of expansion lies

somewhere between the red and the blue curve, with the blue curve being a stronger candidate assuming

an equally good homogeneity over the whole globe. It is therefore possible to directly visualize the signal

variability that can be captured in different time periods, in relation to the maximum degree of expansion.

A first interpretation of Fig. 7.2.2, is that the strongest “AOHIS” variability (darker pixels) has a

long-wavelength behavior taking place at periods of 2.5 days until 1 month. In case of our 11-day

solution, signals with variations shorter than 5.5 days will alias into the solution. However, a daily
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Figure 7.2.1: Flowchart of the Wiese parameterization. Background colors denote the time period of
operation.

parameterization can retrieve a significant part of this signal. This is illustrated by the blue rectangle

in Fig. 7.2.2 top-right, which highlights the signal variability of a daily solution until d/o 20 according

to the Nyquist sampling theorem. It is evident that a large part of the signal that normally aliases, can

be co-estimated and assigned afterwards to the average 11-day solution. The black arrow points to the

crossing point of the maximum degree with the retrieval period, which is positioned in-between the red

and blue solid curves. This suggests an adequate sampling for a daily estimation at the given resolution.

Retrieval periods other than daily have also been investigated due to their different signal content. A

3-daily estimation interval was investigated due to the fact that it holds the same period as the sub-cycle

of the polar pair. A half-daily interval was also investigated in order to capture signals present at even

higher frequencies, mostly driven by atmosphere. Fig. 7.2.2 bottom-left and 7.2.2 bottom-right depict

the retrievable “AOHIS” signal for a 3-day and half-day estimation. Table 7.1 gives an overview of the

investigated parameterization choices.



92 7 Treatment of temporal aliasing effects

Figure 7.2.2: Consolidation of short-period parameterization choices. Top-left plot is taken from Mur-
böck (2015). X-axis stands for the spatial and Y-axis for the temporal resolution. Dashed rectangles
represent the retrievable “AOHIS” signal for given periods and resolution according to the Nyquist theo-
rem. Top-right: daily - d/o 20, bottom-left: 3-daily - d/o 40, bottom-right: half-daily - d/o 10.
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Parameterization Short periods Long period

days max. d/o days max. d/o

Nominal - - - -

Wiese1/10−11/120 1 10 11 120

Wiese1/20−11/120 1 20 11 120

Wiese1/30−11/120 1 30 11 120

Wiese3/30−11/120 3 30 11 120

Wiese0.5/10−11/120 0.5 10 11 120

Table 7.1: Investigated cases of Wiese parameterization.

7.2.1 Noise-free case analysis

As a first step, the potential benefit of co-parameterizing daily lower gravity fields for a noise-free case

was investigated. The reason behind this was to investigate how the Wiese parameterization performs

without the influence of other error sources but the physical temporal aliasing induced by under-sampling

of “AOHIS” signal. Therefore, the term noise-free is here only used conventionally. All investigations

were performed for the same 11-day period lasting from 1-1-1996 until 11-1-1996.

A very important part of the investigations concerned the assessment of the short-period gravity field

solutions. The question is, how much signal is retrieved in those fields. Fig. 7.2.3 depicts the temporal

aliasing effects in terms of DDA in geoid heights for daily, 3-daily and half-daily solutions. The black

curves depict the input “AOHIS” signal and the colored curves the difference of the estimated gravity field

solutions with the mean “AOHIS” for the equivalent time period. In case of a 3-daily parameterization,

the 11-daily long-term average solution could not be reconstructed from integer number of 3-daily short-

term solutions. Therefore, the co-estimation was performed for three 3-daily and one 2-daily short-term

solutions. The daily gravity fields (Fig. 7.2.3 top-left) contain indeed a great part of the “AOHIS” signal,

with a SNR larger than 1 for the complete bandwidth until degree 30. This holds also for the 3-daily

solutions until degree 37 (Fig. 7.2.3 top-right), and for half-daily until degree 10 (Fig. 7.2.3 bottom).

Particularly in case of the daily d/o 10 and d/o 20 solutions, spectral leakage effects show up illustrated by

the increased error levels close to the maximum degree of expansion, indicating that there is retrievable

signal at higher degrees. These findings strengthen our initial assumption that the maximum resolvable

d/o follows the blue solid curve in Fig. 7.2.3. Table 7.2 provides statistical analysis of the gravity field

solutions estimated at high frequencies. In all cases the statistics refer to the mean values of the individual

solutions that were estimated at different maximum expansion. The “AOHIS” signal was estimated each

time with the same maximum expansion as the high frequency gravity field solutions, in order to estimate
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Figure 7.2.3: DDA in geoid heights of solutions estimated at high frequencies. Colored error curves
represent temporal aliasing effects due to under-sampling of “AOHIS” signal.

the corresponding SNR for each parameterization. All cases deliver strong SNR values, with the 3-daily

d/o 30 case having the strongest. From the daily solutions, the strongest SNR value is achieved by the d/o

20 solutions, while the half-daily solutions deliver the smallest values of all cases. It is also interesting

to compare solutions with the same resolution but of different sampling periods. The SNR of daily fields

until d/o 10 is larger than the corresponding half-daily ones. This indicates that being sampled at a higher

frequency, half-daily estimates may capture larger signal variability, but their estimates might not be as

good as the daily ones. The same conclusion is drawn when comparing daily with 3-daily d/o 30 fields.

It remains now to be shown, in what way the co-estimation of the low resolution fields contributes to the

long-term mean solution.

Fig. 7.2.4 depicts the temporal aliasing effects in terms of DDA geoid heights, for the mean 11-day

solutions processed with daily co-estimation of low d/o solutions. Wiese daily parameterization leads to

a reduction of temporal aliasing errors for the complete part of the bandwidth for all cases compared to

the nominal processing. The longer wavelength part follows the error behavior of daily estimates shown

in Fig. 7.2.3, with the error curve representing now the difference between the weighted mean of the

daily estimates and the 11-day mean of the “AOHIS” input signal. Concerning the higher bandwidth



7.2 Co-parameterization of low spatial resolution gravity field solutions at higher frequencies 95

Solution Nr. of gravity
field solutions

“AOHIS”
Std. deviation

(mm)

Aliasing
Std. deviation

(mm)

SNR

Daily d/o 10 11 2.51 0.25 10

Daily d/o 20 11 2.61 0.24 10.9

Daily d/o 30 11 2.65 0.25 10.6

Half-daily d/o
10

22 2.54 0.31 8.1

3-daily d/o 30 3+“1” 2.59 0.20 13

3-daily d/o 40 3+“1” 2.60 0.24 10.8

Table 7.2: Statistical analysis of the gravity field solutions estimated at high frequencies for a noise-
free case. The “AOHIS” signal is estimated at the same expansion as the gravity field solutions and
their difference represents temporal aliasing effects. For each parameterization, given is the mean of the
standard deviation values over the retrieval time periods.
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Figure 7.2.4: DDA in
geoid heights of 11-
day d/o 120 solutions
processed with co-
parameterization of daily
fields (see Table 7.1).
Colored error curves rep-
resent temporal aliasing
effects due to under-
sampling of “AOHIS”
signal.

part, one can notice that the higher the maximum degree of expansion of the daily solutions, the larger

the improvement of the higher degree coefficients. Moreover, the maximum spatial resolution achieved

at the spherical harmonic d/o where the SNR equals to one, is increased from d/o 50 (nominal case)

to d/o 60 for the Wiese1/10−11/120 case, and around d/o 70 for the Wiese1/20−11/120 and Wiese1/30−11/120

cases. Wiese1/30−11/120 case seems to perform best at the short wavelength part of the solution. On the

other hand, an error “jump” is evident near the spherical harmonic degree 38, which is not to be noticed

for the Wiese1/20−11/120 case. This could be attributed to the fact that d/o 30 expansion is close to the
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maximum daily resolvable d/o according to Fig. 7.2.2.
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Figure 7.2.5: Coefficient differences of 11-day d/o 120 noise-free solutions. Top-left: Nominal, top-right:
Wiese1/10−11/120, bottom-left: Wiese1/20−11/120, bottom-right: Wiese1/30−11/120 (see Table 7.1).

The coefficient differences of the solutions processed with daily Wiese parameterization are depicted

in the triangle plots of Fig. 7.2.5. The Wiese parameterization results in an error reduction that is more

profound at higher degree coefficients and at orders that are multiples of the number of orbital revolutions

(∼ 15).
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Figure 7.2.6: DDA in geoid heights of 11-day d/o 120 solutions processed with co-parameterization
of half-daily (left) and 3-daily fields (see Table 7.1). Colored error curves represent temporal aliasing
effects due to under-sampling of “AOHIS” signal.

From a visualization of Fig. 7.2.2, half-daily fields may have a maximum expansion of around d/o
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16. However, simulation runs of such an expansion delivered results with severe degradation at the

lower degree coefficient bandwidth (not shown). Therefore, a half-daily d/o 10 Wiese parameterization

is shown in Fig. 7.2.6-left, where it is also compared with a daily d/o 10 case. Since more signal

variability is captured in the half-daily than the daily fields, a larger improvement with the half-daily

parameterization is to be expected. However, there is only a marginal improvement for the half-daily

case at the coefficients above d/o 40, where for the lower coefficients the error levels are slightly larger.

This could be explained by the fact that daily fields have stronger SNR values than half-daily ones.

According to Fig. 7.2.2, 3-daily fields may have a larger expansion than d/o 30. However, Fig.

7.2.3-bottom, shows that SNR values of 3-daily fields are equal to one near d/o 40. This imposes d/o

40 as the resolution limit for 3-daily solutions. Indeed, simulations performed for d/o 40 expansion

(Fig. 7.2.14-right in Sec. 7.2.3), delivered a severe increase of the error levels at the intermediate

coefficients exceeding the maximum expansion of the 3-daily fields. Fig. 7.2.6-right illustrates the

results of a 3-daily parameterization up to d/o 30. Compared to a daily parameterization of the same

expansion, 3-daily parameterization delivers identical error curves for coefficients larger than d/o 30,

where for the lower coefficients a daily parameterization performs better. This outcome contradicts the

quality analysis of the short-term solutions, where the 3-daily solutions have stronger SNR values than

the daily ones. This can be explained by the fact that daily solutions contain a larger signal variability

than 3-daily, due to the more frequent sampling. The daily parameterization performs therefore better

than the 3-daily in the lower coefficient bandwidth, due to a better recovery of the rapid gravity field

changes. Thus, the sampling frequency plays also an important role for the mitigation of temporal

aliasing effects at the coefficient bandwidth of the co-estimated low-resolution fields. One of the reasons

for parameterizing on a 3-daily basis, was also to investigate the benefits of the repeatability that a sub-

cycle can offer. However, the 3-daily sub-cycle holds only for the polar pair, and its effect diminishes in

case of the Bender constellation, where the sampling of two pairs is interlaced. However, results of daily

parameterization for the polar pair still showed larger improvements than 3-daily (not shown), as it was

the case for the Bender constellation. Therefore, parameterizing at periods equal to sub-cycles of orbits,

is not a prerequisite for a successful reduction of temporal aliasing effects. After all, a period of one day

is itself kind of a “sub-cycle” for near-polar LEO satellites.

7.2.2 Noise-case analysis

The following section investigates different Wiese parameterization choices, for a case where all errors

but de-aliasing model inaccuracies (see Sec. 7.1.2) are considered. The solutions refer to the same

period as the noise-free solutions, and they are processed with frequency dependent data weighting and

co-parameterization of arc-wise linear empirical accelerations. Fig. 7.2.7 depicts the error levels of the

same short period fields as in Fig. 7.2.3, but for the noise case. As it was expected, the DDA curves

of the high-frequency solutions are closer to the signal curves than in the noise-free case. The stronger

presence of noise is also confirmed by their SNR values shown in Table 7.3, which are considerably

smaller than for the error-free case (Table 7.2).
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Figure 7.2.7: DDA in geoid heights of solutions estimated at high frequencies. Processing includes all
errors sources but de-aliasing model inaccuracies.

Solution Nr. of gravity
field solutions

“AOHIS”
Std. deviation

(mm)

Error
Std. deviation

(mm)

SNR

Daily d/o 10 11 2.51 0.68 3.7

Daily d/o 20 11 2.61 0.70 3.7

Daily d/o 30 11 2.65 0.72 3.6

Half-daily d/o 10 22 2.54 0.87 2.9

3-daily d/o 30 3+“1” 2.59 0.64 4

Table 7.3: Statistical analysis of the gravity field solutions estimated at high frequency for the noise
case. The “AOHIS” signal is estimated at the same expansion as the gravity field solutions. For each
parameterization, given is the mean of the standard deviation values over the retrieval time periods.
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Compared to the nominal processing, the Wiese daily parameterization leads to an error reduction in

the coefficient bandwidth larger than d/o 40 for the Wiese1/10−11/120 and Wiese1/20−11/120 cases. Com-

paring the results of the error-free case (Fig. 7.2.4) with the noise case (Fig. 7.2.8), it can be concluded

that the higher the maximum degree of expansion of the daily solutions, the larger the improvement of

the higher degree coefficients. However, unlike the noise-free case, the lower coefficients do not show

improvements compared to the nominal processing. The Wiese1/20−11/120 solution leads to larger im-

provements than the Wiese1/10−11/120, in the coefficient bandwidth above d/o 40. An error increase near

the second band of spherical harmonic resonance orders is noticed. This can be attributed to the fact

that the daily fields of the Wiese1/10−11/120 solution include the first resonance order of the polar pair

( 15), where usually large amount of error is gathered. This small drawback can be compensated by

the fact that the gain in the largest part of the coefficient bandwidth is substantially larger compared to

Wiese1/10−11/120, which does not contain the first resonance order. At last, the Wiese1/30−11/120 case re-

sults in a large error increase near d/o 40, which can be attributed to the fact that d/o 30 is close to the

maximum daily resolvable expansion, and that the SNR values for the daily gravity fields near d/o 30 are

equal or even less than one. Moreover, along with first resonance, d/o 30 fields contain additionally the

second resonance order terms. Thus, they absorb an even larger part of the error that would otherwise

map into multiples of the resonant order terms at much higher degrees. This results in an error increase

after the cut-off degree, which is larger than in case of d/o 20.

0 20 40 60 80 100 120
10

-3

10
-2

10
-1

10
0

degree n

G
eo

id
 h

ei
gh

t [
cm

]

 

 
AOHIS Signal
Nominal
Wiese - 1/10-11/120
Wiese - 1/20-11/120
Wiese - 1/30-11/120

Figure 7.2.8: DDA
in geoid heights of
11-day d/o 120 solu-
tions processed with
co-parameterization of
daily fields (see Table
7.1). Processing in-
cludes all errors sources
but de-aliasing model
inaccuracies.

Fig. 7.2.9 displays the results of half-daily and 3-daily parameterization for the noise case. The half-

daily and 3-daily parameterization perform worse than the noise-free case. Nevertheless, the conclusions

are similar. Daily parameterization captures best the geophysical phenomena that normally alias into the

mean solutions.

As a next step, a spectral analysis of the pre-fit and post-fit residuals for the best case (i.e.
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Figure 7.2.9: DDA in geoid heights of 11-day d/o 120 solutions processed with co-parameterization of
half-daily (left) and 3-daily fields (see Table 7.1). Processing includes all errors sources but de-aliasing
model inaccuracies.

Wiese1/20−11/120) was performed. Figs. 7.2.10 and 7.2.11 summarize the results for the polar and in-

clined pair respectively, where both HL-SST and LL-SST components are depicted. The residuals are

expressed in the CRF. This time, the estimated daily coefficients up to d/o 20 are also taken into ac-

count (as part of the local parameters) for the computation of the post-fit residuals. For the polar pair,

error peaks are experienced at frequencies that are multiples of 1-cpr (∼ 0.18 mHz) for all cases but the

cross-track direction of the HL-SST component, where they appear at multiples of the short-arc length

(∼ 0.56 mHz). The oscillations at multiples of 1-cpr are evident for all cases of the inclined pair, but

are less pronounced for the cross-track direction and, interestingly, also for the LL-SST component. The

latter phenomenon is related to the sampling geometry of the inclined pair, since the East-West sensi-

tivity (cross-track) is stronger compared to the polar pair. The 1-cpr oscillations of the post-fit residuals

are mitigated for both pairs compared to the pre-fit residuals, which comes as a result of the applied

error reduction method (i.e. data weighting and empirical parameterization). In cases where the 1-cpr

oscillations are present, the daily Wiese parameterization brings a further, more radical reduction of their

effect, and a general reduction of the error levels. In those cases however, Wiese parameterization causes

an error increase near the frequency of 4 mHz. The degree of expansion l is related to the frequency f

by :

l =
f αTe

β+α
, (7.5)

where for a full repeat cycle, α is the number of Earth’s rotations w.r.t. the satellite’s precessing orbital

plane in nodal days, β the total number of orbital revolutions performed and Te the time period of a

nodal day in seconds. Applying Eq. (7.5) for the polar pair, we conclude that the error increase at

the bandwidth 0.3 ∼ 5.5 mHz corresponds to degree 16 ∼ 26, which includes the resolution of the daily

gravity field solutions. Therefore, it is of the same nature as the error increase of the DDA values near

d/o 30 in Fig. 7.2.8. Finally, Fig. 7.2.12 depicts the geoid height differences of noise-case d/o 120
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Figure 7.2.10: ASD of pre-fit and post-fit residuals of the polar pair.

solutions, processed with nominal and Wiese daily parameterization. Wiese parameterization results in

a clear reduction of the stripes caused by aliasing. The Wiese solutions show also a more isotropic error

distribution. The standard deviation values of the closed-loop simulations are improved from 1.14mm to

0.89mm in terms of geoid height differences.
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Figure 7.2.11: ASD of pre-fit and post-fit residuals of the inclined pair.

Figure 7.2.12: Closed-loop geoid height differences of 11-day d/o 120 solutions. Left: nominal process-
ing, right: processing with co-parameterization of daily d/o 20 fields (see Table 7.1). Processing includes
all errors sources but de-aliasing model inaccuracies.
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7.2.3 Sequential co-parameterization

The key element for reducing temporal aliasing effects with the Wiese approach is to capture as much

signal variability as possible within the high-frequency estimated gravity field solutions. Parameterizing

in single time periods though, has certain limitations when it comes to the signal variability that can

be captured. Moving a step further, one can think of taking advantage of the additional space before

the blue curve in Fig. 7.2.2, that is left unexploited from a single-period parameterization. This ad-

ditional signal variability can be recovered by means of a two-step approach which we call sequential

co-parameterization, and is achieved in 3 steps :

1. The high degree gravity field coefficients (e.g. from 40 to 120 d/o) are estimated with the same

method as for the Wiese parameterization.

2. The high degree gravity field coefficients are used for the co-estimation of gravity field solutions

at a larger time period (e.g. 3 days) with back-substitution of the pre-eliminated parameters. The

weighted mean of the gravity field coefficients from those solutions is then computed, and the

intermediate bandwidth (e.g. from 30 to 40 d/o) is kept while the lower coefficients are thrown

away.

3. The intermediate together with the high degree gravity field coefficients, form one set of coeffi-

cients that is used in a next step for the co-estimation of the daily gravity field solutions. The

weighted mean of those solutions provide then the low degree gravity field coefficients.

Fig. 7.2.13 depicts two examples of sequential co-parameterization. Especially the right plot of

Fig. 7.2.13 demonstrates the ability of the two colored rectangles to recover signal beyond the limits

of a daily parameterization which is at a maximum expansion of d/o 30. Sequential parameterization

considers additionally the part covered by the beige rectangle, by co-estimating daily up to d/o 30 and

3-daily from 31 to 40 d/o. Table 7.4 summarizes the details behind the cases investigated.

Parameterization Short periods Intermediate periods Long period

days max. d/o days max. d/o days max. d/o

Wiese1/20−3/30−11/120 1 20 3 30 11 120

Wiese1/30−3/40−11/120 1 30 3 40 11 120

Table 7.4: Investigated cases of sequential co-parameterization.

Fig. 7.2.14 shows the results of the two cases investigated with sequential co-parameterization, for

a noise-free processing. The results of the right plot belong to a parameterization which is at the edge

of the resolution limits (according to the findings of Sec. 7.2.1), whereas the left plot shows the results

of a more moderate parameterization. Results from daily and 3-daily parameterization are also shown
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for reasons of comparison. In both plots, the error curves of the sequential co-parameterization follow

the ones from 3-daily in the bandwidth larger than the cut-off degree of the high coefficients (i.e. d/o 30

for Fig. 7.2.14-left, d/o 40 for Fig. 7.2.14-right). Sequential co-parameterization performs also better

than 3-daily, in the lower degree bandwidth up to the cut-off degree of the intermediate coefficients (i.e.

d/o 20 for Fig. 7.2.14-left, d/o 30 for Fig. 7.2.14-right), as a result of the daily parameterization. The

expected improvements compared to a single daily parameterization are achieved for the higher degree

coefficients. However, at the bandwidth of intermediate coefficients (i.e. d/o 21 ∼ 30 for Fig. 7.2.14-

left, d/o 31 ∼ 40 for Fig. 7.2.14-right), temporal aliasing effects are reduced more effectively by a daily

parameterization. On the other hand, the cyan curve in Fig. 7.2.14-left reveals a marginal gain in terms

of spatial resolution w.r.t. the blue one and still maintains lower error levels than the nominal processing

(red curve). In case of Wiese1/30−3/40−11/120, it was expected to gain some improvements compared to

the single daily parameterization at the resolution limits of d/o 30. However, a large error increase after

d/o 40, implies that the resolution limits for the 3-daily fields are also exceeded from a choice larger than

d/o 30.

From the noise-free simulations, it can be concluded that a daily parameterization is more suitable

than a sequential for reducing temporal aliasing effects in case of a 11-day Bender solution. This outcome

is also confirmed by the noise-case simulation illustrated in Fig. 7.2.15. A daily parameterization with

a maximum resolution of d/o 20 remains the best choice for reducing the error levels in the solutions,

since it provides the best compromise between the largest possible amount of signal to be captured and

Figure 7.2.13: Consolidation of sequential co-parameterization choices. X-axis stands for the spatial and
Y-axis for the temporal resolution. Dashed rectangles represent the retrievable “AOHIS” signal for given
periods and resolution according to the Nyquist theorem.
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Figure 7.2.14: DDA in geoid heights of 11-day d/o 120 solutions processed with sequential co-
parameterization of daily and 3-daily fields for a noise-free case(see Table 7.4). Colored error curves
represent temporal aliasing effects due to under-sampling of “AOHIS” signal.

the shortest time period in which it changes.
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Figure 7.2.15: DDA in
geoid heights of 11-day
d/o 120 solutions pro-
cessed with sequential co-
parameterization of daily
and 3-daily fields for a
noise case(see Table 7.4).
Processing includes all
errors sources but de-
aliasing model inaccura-
cies.

7.2.4 Assessment of individual aliasing components

Previous sub-sections were dedicated to the treatment of aliasing effects induced by the sum of all alias-

ing sources. However, it is also of high importance to quantify the contribution of the individual aliasing

components to the error-budget, and the ability of Wiese parameterization to absorb them. For that

case, a Wiese1/20−11/120 co-parameterization was considered. The components investigated, consist of

geophysical signals with strong variations at high frequencies, namely atmosphere “A”, ocean “O” and
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hydrology “H” (ice “I” and solid Earth “S” were not examined), as well as ocean tide model inaccuracies.

All cases considered noise propagation of sensor errors. In case of the geophysical signals, processing

excluded the effect of ocean tide model inaccuracies. Consequently, for investigating the aliasing effect

of ocean tide model inaccuracies, processing excluded the use of any other temporal variations of the

gravity field. By this, the effect of all aliasing components was assessed individually in the presence

of sensor errors. Table 7.5 provides statistical analysis for the daily fields of the individual geophysical

Component Solution Nr. of
gravity

field
solutions

“A”, “O”,“H”
Std. deviation

(mm)

Error
Std.

deviation
(mm)

SNR

Atmosphere
“A”

Daily d/o 20 11 1.8 0.37 4.9

Ocean
“O”

Daily d/o 20 11 1.4 0.35 4

Hydrology
“H”

Daily d/o 20 11 0.78 0.31 2.5

Table 7.5: Statistical analysis of the gravity field solutions estimated at high frequency for the individual
components “A”, “O” and “H”. For each component, the signal is estimated at the same expansion as the
gravity field solutions. For Wiese1/20−11/120 parameterization, given is the mean of the standard deviation
values over the retrieval time periods.

signals. As expected, the most variability contained in the daily “AOHIS” fields comes from atmosphere.

The daily atmospheric fields exhibit also the strongest SNR values, followed by the oceanic fields. The

hydrological variations in daily intervals have considerably weaker variation and SNR values than the

other components. Therefore, the daily co-parameterization in case of hydrology is expected to exhibit

the smallest improvements. Results of the simulations performed for the individual geophysical signals

are depicted at Figs. 7.2.16 and 7.2.18. Indeed, the best error reduction is performed in case of atmo-

sphere, which induces also the largest aliasing effects. It is worth noticing, that the improvements hold

for the whole bandwidth of coefficients. In case of the ocean signals, aliasing and improvements from

the Wiese parameterization are less prominent. A degradation at the second resonance band (i.e. d/o 30)

is evident. This error increase is present in the Wiese parameterization of all three “A”, “O” and “H”

components, and is caused by including the first orbit resonance term at the daily d/o 20 fields. Aliasing

induced by hydrology is only marginally improved for coefficients higher than d/o 40, where at longer

wavelengths results are even degraded.

Figs. 7.2.17 and 7.2.18-bottom-right, depict the results of processing with ocean tide model errors.

Their aliasing effects constitute the next major contributor to the aliasing error budget along with the

aliasing caused by the under-sampling of atmosphere. Contrary to the atmospheric component, aliasing

due to the ocean tide model errors does not show the same reduction when processed with the Wiese
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I) Atmosphere

II) Ocean

III) Hydrology

Figure 7.2.16: Closed-loop geoid height differences of 11-day d/o 120 solutions for individual geophys-
ical components. Left: nominal processing, right: processing with co-parameterization of daily d/o 20
fields. All errors sources included but de-aliasing model inaccuracies and ocean tide model errors.

approach. In fact, it remains the biggest contributor to the error budget and dominates the error spectrum

at the low to intermediate degrees, until the maximum expansion of the two different ocean tide models
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0.5 IV) Ocean tide model errors

Figure 7.2.17: Closed-loop geoid height differences of 11-day d/o 120 solutions processed with ocean
tide model and sensor errors. Left: nominal processing, right: processing with co-parameterization of
daily d/o 20 fields. No temporal gravity field variations have been considered.

used (d/o 50) is reached. Around that degree an error increase is manifested, which is attributed to the

strict cut-off of their contribution at this expansion. On the other hand, the error increase near d/o 30

present at the previous cases is not to be witnessed. This could predispose a weaker sensitivity of the

error behavior, in this case, to the content of the daily fields. As expected, the daily parameterization

can hardly capture the main ocean tide signals with daily or even half-daily periods. On the other hand,

this might indicate that a daily Wiese parameterization might not be strongly correlated with a dedicated

parameterization of ocean tide signals. A proper treatment of errors induced from ocean tide model inac-

curacies involves co-estimation of tidal constituents at their aliasing periods, using very long observation

time series of nearly a decade. This requires a sophisticated parameterization in case of a Bender con-

stellation, where the estimation of tidal aliasing periods is not so trivial as for a polar pair, and is beyond

the scope of this study.
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Figure 7.2.18: DDA in geoid heights of 11-day d/o 120 solutions of individual components inducing
aliasing effects. Depicted are error curves of nominal and Wiese1/20−11/120 solutions.

7.2.5 Processing of an alternative constellation

In order to investigate the effect of the orbit choice on the aliasing reduction method, an alternative

constellation has been selected and processed for both nominal and Wiese1/20−11/120 parameterization.

Table 7.6 summarizes the orbit details of the alternative constellation, with the major differences from

the baseline constellation being the following :

• The two pairs exhibit much longer repeat cycles and sub-cycles. In fact, the repeat cycles of both

pairs (130 and 131 days) are much longer than the solution period of 11 days. This was not the

case for the polar pair of the baseline constellation, which experienced a full cycle exactly after 11

days.

• The polar pair has a prograde orbit instead of a retrograde one.

• The inclined pair has an inclination closer to 90o,which allows for a larger region to be sampled

with two pairs.
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Altitude
(km)

Inclination
(deg)

Inter-satellite
distance (km)

β/α

(rev./day)
sub-cycle

(days)

Polar pair

362 89.5 100 2031/130 61

Inclined pair

329 70 100 2047/131 8

Table 7.6: Configuration setup of the orbits for the alternative constellation

 120oW   60oW    0o    60oE  120oE  180oW 

  80oS 

  40oS 

   0o  

  40oN 

  80oN 

 120oW   60oW    0o    60oE  120oE  180oW 

  80oS 

  40oS 

   0o  

  40oN 

  80oN 

Figure 7.2.19: Spatial ground-track coverage of both pairs of the Bender constellation for the period of
1 day. Left: baseline constellation, right: alternative constellation.

Fig. 7.2.19 depicts the spatial coverage of both pairs for the period of 1 day for both constellations.

It is evident that the inclined pair of the alternative constellation covers a larger part of the Earth than

the inclined pair of the nominal one. One can also notice that the spatial coverage in 1 day is more or

less homogeneous at the same level as for the nominal constellation. This is an important aspect for the

effectiveness of the Wiese parameterization.

An 11-day gravity field solution of “AOHIS” signal was generated both for the nominal, as well as

for the Wiese case, for the same time period and noise assumptions. The nominal processing for the

alternative constellation delivers a solution with accuracy comparable to the baseline one. An inspection

of the DDA values (red curves at Fig. 7.2.20) reveals similar error levels for the two constellations. The

spatial plots of the errors expressed in geoid undulations (Fig. 7.2.22) reveal a different error pattern. The

latitudinal stripes at the very high and low latitudes, which are attributed to the loss of the inclined pair

at these regions, are restricted to a smaller area near the poles. This results from the higher inclination

choice of the inclined pair. The improvement in those regions is also observable at the triangle plots of the

coefficient differences (Fig. 7.2.21-left), where the typical “butterfly” pattern is less pronounced and nar-
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Figure 7.2.20: DDA in geoid heights of 11-day d/o 120 solutions of individual components inducing
aliasing effects. Depicted are error curves of nominal and Wiese1/20−11/120 solutions.
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Figure 7.2.21: Coefficient differences of 11-day d/o 120 noise-case solutions of the alternative constella-
tion. Left: nominal processing, right: Wiese1/20−11/120 processing (Table 7.1).

parameterization delivers improved solutions compared to the nominal parameterization. The level of

improvement is comparable to that of the baseline constellation. However, the error increase at twice

the resonant frequency (i.e. d/o 30) is more prominent than for the baseline constellation. This could

be related to the higher noise levels of the daily fields in case of the alternative constellation (SNR=3.4

compared to SNR=3.7 for the baseline). Both constellations have a maximum spatial resolution of 285

km half-wavelength. Comparing the geoid plots of Fig. 7.2.22-right and 7.2.12-right, one can notice

a more “stripy” behavior for the alternative constellation overall except for the regions of higher lati-

tudes, where the error levels are reduced. This is also confirmed by the coefficient triangle plot of Fig.

7.2.21, where the “butterfly” effect is also reduced. A degradation of the low-to-intermediate sectorial

coefficients compared to nominal parameterization can also be observed. The improvements in the high

latitude regions, come at the expense of a noisier performance in the intermediate-to-low latitudes, as

a result of the smaller amount of observations. Counter-balancing this effect, will therefore be an open
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question for mission design of NGGMs. A possible solution of the issue could be to treat the latitudinal

stripes at the transition zones with a suitable spatial filtering.

Figure 7.2.22: Closed-loop geoid height differences of 11-day d/o 120 solutions for the alternative con-
stellation. Left: nominal processing, right: Wiese1/20−11/120 processing (Table 7.1).

An important conclusion from processing with the alternative constellation is that Wiese parameteri-

zation led to similar improvements in the medium-to-short wavelengths and increase of spatial resolution.

Consequently, there are strong indications that the performance of Wiese processing in this coefficient

bandwidth, is rather insensitive to the orbit choice of cycles or sub-cycles. The only prerequisite seems

to be a uniform sampling of the parameterized periods (here 1 day). Nevertheless, the SNR values of

daily fields, do play a role for the error increase at the second band of the orbit resonance. This could

facilitate mission design of NGGMs, in having no strict constraints for specific repeat periods, or a ret-

rograde orbit, as far as the efficiency of Wiese processing in increasing spatial resolution is concerned.

Fine-tuning of the parameterization choices is nevertheless of crucial importance.

7.3 Retrieval content of NGGM gravity field solutions

In Sec. 7.1.2, the ability of NGGMs in retrieving the full “AOHIS” signal was discussed. Here, we

address this argument once again in order to enrich it with the insights gained from treating temporal

aliasing errors by co-estimating low resolution gravity fields at higher temporal frequencies.

One of the most important findings from processing with Wiese parameterization, is that the method

treats aliasing effects induced by under-sampling of atmosphere and ocean signals in a very suitable

manner. This is achieved through a retrieval of the strong signal variability at short-term scales, and

a successful assignment of their influence to the mean 11-day solution. It was also shown that due to

its weak variability at high frequencies, hydrology does not contribute drastically to the aliasing error

budget, and consequently does not gain much from the Wiese parameterization. This holds also for the

augmented case of “HIS” signals, where the variability of Ice “I” and Solid Earth “S” has a much longer-

term behavior. Solving for “HIS”, involves use of “AO” de-aliasing models with inaccuracies that alias
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into the mean solution. Wiese parameterization can also reduce these aliasing effects, since they are also

contained in the short-term solutions. The big difference though compared to solving for “AOHIS”, is

that the short-term solutions contain the effect of “HIS + AO errors” instead of “AOHIS”. This is an

additional noise source being present in the short-term fields, that could diminish also the effectiveness

of Wiese parameterization.

Strategy Input “On-the-fly”
De-aliasing
(6-hourly)

Output A posteriori
reduction

(11-day mean)

1 “AOHIS” “AO + AOerr” “HIS” -

2 “AOHIS” - “AOHIS” “AO + AOerr”

Table 7.7: Strategies for retrieving “HIS” gravity field solutions

Products of LL-SST missions like GRACE and hopefully also GRACE-FO, are extremely useful to

many fields of geosciences. However, they have been particularly helpful for hydrological and water

cycle observation purposes. As mentioned before, the gravity field solutions provided by the GRACE

processing centers include the “HIS” part of the signal. That makes those fields handy for those thematic

fields to use. In case NGGMs deliver the full “AOHIS” signal, the users interested in “HIS” will have

to use “AO” models to separate them from the “HIS” target signal. The error characteristics of such an

a posteriori signal separation, was compared to the classical “on-the-fly” de-aliasing performed so far

by the processing centers. Table 7.7 gives a description of the 2 different strategies for retrieving “HIS”

signal. Fig. 7.3.1 shows the results of retrieving “HIS” gravity field solutions using both strategies.
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Figure 7.3.1: DDA in geoid heights of 11-day d/o 120 “HIS” solutions using both retrieving strategies.
Left: nominal processing, right: Wiese1/20−11/120 processing (Table 7.1).

Results from strategy 2 include a case where the a posteriori subtraction of “AO errors” is considered

(red curves), and a case where it is not (blue dashed curves). Fig. 7.3.1-left depicts the results of a
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nominal, where Fig. 7.3.1-right of a Wiese1/20−11/120 processing. The two strategies deliver similar

results for the nominal processing until d/o 20, where results from Strategy 2 start to reveal a higher

noise level. This is most probably attributed to the higher aliasing error levels induced by under-sampling

of “AOHIS”, compared to “HIS” signal. The effect of the de-aliasing “AO” model errors, can only be

quantified at an a posteriori basis, by comparing the red with the blue dashed curves. On the other hand,

Wiese parameterization leads to error levels that are closer for the two strategies. The error levels for

Strategy 2 begin to degrade for coefficients larger than d/o 40 compared to Strategy 1. The difference in

maximum spatial resolution is also smaller. This error convergence is related to the fact that Strategy 2

shows larger improvements when processed with Wiese parameterization. Spatial plots of closed-loop

geoid height differences depicted in Fig. 7.3.2, reveal that the main differences from the two strategies

processed with Wiese parameterization are located in the transition zones, where information from the

inclined pair is gradually unavailable. The spatial plots show differences and statistics from a latitude

band-limited area with −65o ≤ lat ≤ 65o. Nominal processing results in a noisier pattern for Strategy 2,

while Wiese processing delivers similar error patterns, and standard deviation values that differ only by

10µm.

Figure 7.3.2: Closed-loop geoid height differences of 11-day d/o 120 “HIS” solutions. Results are lat-
itude band-limited to −65o ≤ lat ≤ 65o. Top: nominal processing, bottom Wiese1/20−11/120 processing
(Table 7.1). Left: strategy 1, right: strategy 2.
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Investigations concerning retrieval strategies for “HIS” solutions revealed the ability of Wiese pa-

rameterization to deliver equally good solutions with both strategies for regions covered by both pairs.

The conclusions are based on simulations performed with specific error assumptions. If the assumptions

for the de-aliasing model errors or the signal power in “AOHIS” models are not realistic, the conclusions

might be different. Nevertheless, conclusions from the investigated Bender-type constellation support

the ability of NGGMs to observe additionally the high frequency signals in atmosphere and ocean, and

to deliver the full integrated “AOHIS” signal. This can be of a great value to the scientific community,

due to the following reasons :

• Mean solutions will contain the full spectrum of non-tidal geophysical processes that comprise

system Earth, free of de-aliasing model errors.

• Meaningful “HIS” solutions can be retrieved by the users through an a posteriori subtraction of

mean “AO” fields.

• By-product of short-term (e.g. daily) solutions will be for the first time available. Since they will

contain the full “AOHIS” signal, they could be of a great value to atmospheric science, opening

doors to new fields of application.

Finally, it is worth to mention the possibility of a mixed strategy that could be investigated at the

framework of future studies. High frequency signals that cannot be resolved at the short-term basis of

a Wiese parameterization, could be reduced by a high-pass filtered “AO” de-aliasing. Assuming a daily

parameterization, a cut-off frequency of 1/2 days could be used to high-pass filter the “AO” time series.

The de-aliasing of high-pass filtered “AO” signals would lead then to a better treatment of aliasing due

to under-sampling, with an average solution however influenced by the high frequency part of the “AO”

model errors.





Chapter 8

Conclusions

The main objective of this study was to investigate the potential of future LL-SST satellite missions in

improving the knowledge of the gravity field of the Earth. The integral equation (short-arc) approach

was used for the full-scale gravity field simulations. Stochastic models of the instrument errors expected

to be applicable for NGGMs were used to assess their contribution to the error budget. At a first stage,

simulations were performed for a GRACE-type polar pair, flying in a drag-free mode. The maximum

resolution of the solutions was set to d/o 120, and the observation time period to one month.

Analysis of closed-loop simulations has exposed the insufficiency of numerical processing accuracy,

when observations from new generation sensors such as a laser interferometer are used. It was shown that

gravity field processing with double precision may be a limiting factor for exploiting the laser’s nm-level

accuracy. A new scheme of enhanced precision processing was proposed instead, where double precision

and quadruple precision processing are used in different parts of the processing chain. Processing with

enhanced precision leads to a reduction of processing errors induced by round-off errors which limit

the system accuracy in case of double precision. Misclosures of noise-free closed-loop simulations in

terms of geoid height differences for solutions complete to d/o 120, show improvements compared to

the standard processing from 1.2 × 102µm to 5.4 × 10−1µm in case of using ranges as observations and

3.4 × 101µm to 2.1 × 10−2µm in case of range rates. At the same time, the computational times of this

hybrid scheme are kept within reasonable limits for full-fledged gravity field processing. Results from

noise propagation of a laser interferometer show that enhanced precision can efficiently handle laser

measurements and take full advantage of their accuracy. Other error sources (e.g. accelerometers) have

a considerable larger impact to the error budget than the laser interferometer. However, advances in

sensor metrology and design of SFF constellations, may lead to reduction of these error levels, and thus

necessitate the usage of enhanced numerical precision gravity field processing for NGGMs.

Error budget analysis of a polar pair NGGM scenario was performed with the double precision ver-

sion of the simulator. It was concluded that the accelerometer instrument noise and temporal aliasing

effects constitute the most significant error sources. Temporal aliasing refers to effects that mainly re-

sult from three individual error sources: under-sampling of non-tidal signal of interest (e.g. hydrology),
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errors of de-aliasing models (atmospheric and oceanic part) and errors of ocean tide models. All three

aliasing error sources result in similar gravity field error levels, from which temporal aliasing due to

under-sampling of “AOHIS” signal is the most significant, leading to a 3.3 × 101 mm standard deviation

of closed-loop geoid height differences for solutions complete to d/o 120. Propagation of accelerometer

errors resulted in a standard deviation of 4.4 × 101 mm. The individual effects of laser, attitude and orbit

errors have also been assessed and found to be less significant.

Methods of noise reduction have been investigated for a noise case considering all error sources.

Frequency dependent data weighting proved to be a very efficient method to de-correlate colored noise

present in the system. In case of processing with real data, a noise realization is not known a priori,

and the dependency of noise on frequency can be estimated on the basis of residuals. In the performed

simulations, a weight matrix was computed from the auto-covariance values of residuals. The precondi-

tions of non-stationarity and ergodicity of the noise realization were satisfied by using residuals which

contained only the effect of system errors and propagated accelerometer and laser noise. The weight

matrix constructed from these residuals, considered time correlations among all epochs separated by a

maximum lag of almost half a day. A noise case considering all error sources processed with this weight

matrix, showed improvements over the complete error bandwidth. Standard deviations of geoid height

differences were reduced from 6.45 cm to 0.52cm. Processing with co-parameterization of empirical

accelerations did not show the same efficiency in reducing the propagated noise. The investigated mod-

els for empirical parameterization resulted in improvements at the higher, and degradations at the lower

degree coefficients. This may be related to the applied gravity field approach which updates the set of

empirical accelerations together with the boundary conditions of a short-arc (every 30 min), and should

be further investigated. Using data weighting together with empirical parameterization, showed the same

relative error behavior compared to a case considering only data weighting. In general, empirical esti-

mated parameters may reduce the total error level, but can also absorb real gravity signals. The usage of

frequency dependent data weighting is suggested as a more efficient method of noise reduction.

Temporal aliasing is one of the key limiting factors for the precision of NGGM gravity field so-

lutions. Investigations were performed for a more complex SFF scenario with two pairs of satellites,

consisting of one pair in a near-polar orbit and the other in an inclined orbit. This so-called Bender-type

constellation resulted in major improvements of “AOHIS” solutions in terms of de-aliasing potential and

recovery performance, translated into an increase in spatial resolution of 11-day solutions from 715 to

315 km compared to the polar pair. Treatment of temporal aliasing effects was also investigated at the

level of gravity field processing. The Bender constellation results in an increase of temporal and spatial

resolution. This facilitates the retrieval of high frequency gravity field information at large spatial scales.

The Wiese approach takes advantage of this information and uses it as a natural de-aliasing of the long-

term average solution. According to this parameterization, low resolution gravity fields are co-estimated

at short time intervals together with the higher resolution gravity field which is sampled at a longer time

interval. A fine-tuning of the Wiese approach for the chosen constellation was performed. Different tem-

poral resolutions of daily, half-daily and 3-daily periods were among the investigated parameterization
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choices. Validation was performed for the long-term as well as the short-term solutions. The SNR values

of the short-term solutions in connection with the frequency at which they are sampled, play the most

important role for the efficiency of the Wiese approach in mitigating temporal aliasing effects. Moving a

step forward from Wiese parameterization, a two-step approach was developed in order to capture more

signal variability than in single periods. This sequential co-parameterization exploits a larger retrievable

space, by co-estimating intermediate-degree coefficients in longer periods (e.g. 3 days) additional to the

low-degree coefficients co-estimated in shorter periods (e.g. 1 day). However, investigations concluded

that the best results are obtained with a daily co-parameterization of a d/o 20 maximum resolution. The

application of this parameterization led in a clear reduction of the stripes caused by aliasing, and of the

total error levels. For a case considering only temporal aliasing due to under-sampling of “AOHIS” sig-

nal, the maximum spatial resolution was increased from 400 km to 285 km, and for a case considering all

error sources from 320 km to 285 km half-wavelength. The key findings of the investigations performed

with the Wiese approach can be summarized as follows:

• One day is the optimal sampling period for reducing the error levels in the solutions, since it

provides the best compromise between the largest possible amount of signal that can be captured

and the shortest time period in which it changes.

• The performance of Wiese processing at the medium-to-short wavelengths, is rather insensitive to

the orbit choice of cycles or sub-cycles. The only prerequisite seems to be a uniform sampling at

parameterized short periods (e.g. 1 day).

• Errors due to ocean tide model inaccuracies cannot be handled efficiently by a Wiese parameteri-

zation, and remain the biggest contributor to the aliasing error budget after applying the method.

• NGGMs could deliver the full spectrum of geophysical processes that comprise system Earth (i.e.

“AOHIS”), free of de-aliasing model errors.

• Additional by-products of short-term (e.g. daily) “AOHIS” solutions available for the first time

from a gravimetric satellite mission could be of a great value to atmospheric science, thus opening

doors to new fields of application.
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