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Abstract
Image orientation, also called pose estimation in disciplines other than classical photogrammetry,

has been a key task in photogrammetry and computer vision for quite a time. Recently, autonomous
systems, for instance, and the availability and ease of capturing images led to new applications, for
which the knowledge about the camera's position and attitude is important. With this diversity of
applications, a novel concept for solving the orientation problem up to a �nal bundle adjustment
evolved: global image orientation. Approaches that follow this concept aim to improve relevant
issues of traditional sequential methods for the computation of initial orientation parameters, mainly
the necessity of intermediate bundle adjustment and the consequent ine�ciency, as well as the
distribution of uncertainties, which is unfavorable, due to the sequential block enlargement.

In global methods, the orientation parameters of all images are estimated simultaneously based
on pairwise relative information. This is a prerequisite for a more realistic distribution of uncer-
tainties. The problem is simpli�ed by a partition into three estimation steps, separated by the type
of parameters: rotations, translations and object coordinates of homologous points. This order is
generally �xed. A serious challenge in most practical applications are outliers in both, the image
coordinates of homologous points and resultant relative orientations.

This thesis addresses the formulation of a new global image orientation approach. Focusing
on the �rst two steps, the robust estimation of rotations and translations, this approach combines
di�erent strategies from related work and provides important extensions regarding an e�ective outlier
elimination. Firstly, relative orientations are estimated linearly based on homologous points using a
random sampling approach and improved in a reweighted nonlinear Gauss-Helmert-model. Secondly,
in order to detect inconsistent relative rotations, a graph-based breadth propagation algorithm is
developed, which sequentially identi�es erroneous relative rotations based on the cycle constraint of
rotations. In the third stage, global rotations are estimated by a convex semide�nite program (SDP)
and a subsequent Lie algebraic averaging. For the SDP, both the objective function and the feasible
region of the solution are relaxed. The Lie algebraic averaging uses this solution as initialization for a
weighted iterative estimation in the corresponding tangent space. Finally, translations are estimated
using point tracks, i.e. a set of points, of which in each of the images at least one is visible. These
points are selected based on a novel strategy. Together with estimated rotations these points are
used to formulate linear constraints for the estimation of translations. Regarding outliers in the
image coordinates of the homologous points, two additional conditions are established, one based on
the reprojection error of local pairwise reconstructions, the other using a redundant scale estimation
from image triplets.

For the analysis and validation of the method, experiments are conducted on synthetic data
and real images. Synthetic data is used to evaluate the accuracy and robustness of the approach.
Experiments on real images include four di�erent benchmark datasets that are used to assess the
proposed method with respect to recent state-of-the-art models. Moreover, large image sets from
image-hosting websites are processed in order to demonstrate the scalability of the method. This
also includes images with many di�erent camera models, for which only a rough guess about their
interior orientation is available. Results show that the proposed approach achieves accurate results,
partly more precise than comparable state-of-the-art models, is very robust against outliers and is
applicable to various kinds of image data.
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Zusammenfassung
Die Orientierung von Bildern, in Bereichen auÿerhalb der klassischen Photogrammetrie auch

Posenschätzung genannt, ist seit langem eine der Hauptaufgaben in der Photogrammetrie und im
Bereich der Computer Vision. Seit dem Übergang zur digitalen Fotogra�e haben unter anderem
die hohe Verfügbarkeit und einfache Erfassung von Bildern sowie die Entwicklung autonomer Sys-
teme dazu geführt, dass immer mehr Verfahren auf die Bestimmung der Position und Ausrichtung
der Kamera aufbauen. Damit einhergehend entstand ebenfalls ein neues Konzept zur Lösung der
Bildorientierung, genau genommen eine Bestimmung von Näherungswerten für eine abschlieÿende
Bündelblockausgleichung, die globale Bildorientierung. Globale Orientierungsansätze zielen darauf
ab, bestimmte Nachteile der sequentiellen Methoden zu überwinden, insbesondere, dass diese Meth-
oden von einer mehrfach durchzuführenden Bündelblockausgleichung abhängen und als Konsequenz
relativ ine�zient sind und dass die Unsicherheiten durch den sequentiellen Aufbau des Modells nicht
gleich über alle Bilder verteilt sind.

In globalen Methoden werden die Orientierungsparameter aller Bilder gleichzeitig basierend auf
paarweiser relativer Information geschätzt. Dies ermöglicht eine günstigere Verteilung der Unsicher-
heiten. Das Problem wird vereinfacht und auf drei einzelne Schritte verteilt, welche sich unter-
schiedlichen Typen von Parametern widmen: Rotationen, Translationen und Objektkoordinaten
der homologen Punkte. Diese Reihenfolge während der Schätzung ist im Allgemeinen fest. Eine
wesentliche Herausforderung in den meisten Anwendungen stellt die Detektion und Elimination
von Ausreiÿern dar, sowohl in den Bildkoordinaten der homologen Punkte als auch in den daraus
resultierenden relativen Orientierungen.

Diese Doktorarbeit addressiert die Formulierung eines neuen globalen Bildorientierungsansatzes,
mit dem Fokus auf der robusten Schätzung von Rotationen und Translationen, welcher verschiedene
Strategien aus existierenden Ansätzen kombiniert und um wichtige Funktionen zur wirkungsvollen
Ausreiÿerdetektion erweitert. Zunächst werden relative Orientierungen linear mit Hilfe von RANSAC
geschätzt und in einem gewichteten Gauÿ-Helmert-Modell iterativ verbessert (1). Um Ausreiÿer in
den relativen Rotationen zu detektieren, wird danach ein neues, graphenbasiertes Verfahren in Form
einer Breiten-Propagierung entwickelt, das sequentiell fehlerhafte relative Rotationen basierend auf
ihrer Schleifenbedingung identi�ziert (2). Im dritten Teil werden globale Rotationen zunächst in
einem konvexen Semide�niten Optimierungsproblem (SDP) geschätzt und anschlieÿend in einem
Mittelungsalgorithmus in der Lie Algebra der Rotationen verbessert (3). Für das SDP werden sowohl
die Zielfunktion als auch die zulässige Lösungsmenge relaxiert; die Lösung dient dann der Initialisie-
rung der nachfolgenden iterativen und gewichteten Schätzung im Tangentialraum der Rotationen,
der Lie Algebra. Schlieÿlich werden die Translationen mit Hilfe von den geschätzten Rotationen und
spezieller Punkte geschätzt, von denen in jedem der Bilder mindestens einer zu sehen ist (4). Für
die Auswahl dieser Punkte wird eine neue Strategie vorgestellt. Um die Ausreiÿer in den Bildko-
ordinaten der homologen Punkten zu eliminieren, werden zwei zusätzliche Bedingungen aufgestellt,
die eine basierend auf dem Rückprojektionsfehler in einer lokalen paarweisen Rekonstruktion, die
andere unter Verwendung einer redundanten Maÿstabsschätzung für Bildtripel.

Zur Analyse und Validierung der Methode werden Experimente basierend auf synthetischen Daten
und realen Bildern durchgeführt. Synthetische Daten dienen der Evaluierung der Genauigkeit und
Robustheit des Ansatzes. Die Experimente auf den realen Bildern beinhalten vier unterschiedliche
Benchmark-Datensätze, mit Hilfe derer die entwickelte Methode mit derzeitigen State-of-the-art-
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Modellen verglichen wird. Weiterhin werden groÿe Bilddatensätze von speziellen Bild-Webseiten
prozessiert, um die Skalierbarkeit der Methode zu demonstrieren. Dabei spielen Daten, bei denen
verschiedene Kameramodelle verwendet wurden, deren innere Orientierung nur sehr grob bekannt
ist, ebenfalls eine Rolle. Die Ergebnisse zeigen, dass der vorgestellte Ansatz im Vergleich zu State-
of-the-Art-Methoden zum Teil präzisere Orientierungen liefert, sehr robust gegenüber Ausreiÿern ist
und auf verschiedende Arten von Bilddaten anwendbar ist.
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Notation and table of symbols

General notation

a, b, α, β, X, Y Scalars
a, b, d, u, x, y Vectors
A, B, C, X, Y, Z Matrices
A, B, C, D, T , W Sets
A, B, C, D, T, W Items of sets
A, B, C, N, R, Z Spaces

Image orientation

I set of images
Ii image i
Ri, ti global rotation and translation of Ii
Rij , tij relative rotation and translation between images {Ii, Ij}
P set of points
Pl point l in object coordinates
pl
i image coordinates of point l in Ii
R set of global rotations estimated in breadth-propagation
R? set of global rotations estimated in SDP
R?

i global rotation of Ii estimated in SDP
R?? set of global rotations estimated in SDP and Lie algebraic averaging
R??

i global rotation of Ii estimated in SDP and Lie algebraic averaging
RBA set of global rotations after bundle adjustment
RBA

i global rotation of Ii after bundle adjustment
T ?? set of estimated global translations
t??i estimated global translation of Ii
T BA set of global translations after bundle adjustment
tBA
i global translation of Ii after bundle adjustment
R0

ij , t
0
ij initial relative rotation and translation between images {Ii, Ij}

R?
ij , t

?
ij relative rotation and translation between images {Ii, Ij} after M-estimation

ΣR?
ij
, Σt?ij covariance matrices of R?

ij and t?ij

pij , p?
ij

image coordinates of homologous points of image pair {Ii, Ij} before and after
M-estimation

τ|p| threshold for number of correspondences
dchordal chordal distance between two rotations
dquaternion quaternion distance between two rotations
dα angular distance between two rotations

Groups and manifolds

O(3) orthogonal group of dimension 3
SO(3) special orthogonal group of dimension 3
so(3) Lie algebra to SO(3)
Q quaternion sphere
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Convex optimization

f0(x) objective function
fi(x), gj(x) inequality and equality constraints
n,m, p dimension of parameter space, number of inequality and equality constraints
dom f domain of f ; the subset of points, for which f is de�ned
∇f(x1) �rst order derivative of f(x1)
conv(D) convex hull of set D
L (x,λ,ν) Lagrange function
g (λ,ν) Lagrange dual function

M-estimation relative orientations

c{tij ,Rij} condition equation for M-estimation of relative orientation
B partial derivatives with respect to observations
J{tij ,Rij} Jacobian matrix for M-estimation of relative orientation
v vector of residuals
x vector of parameters [tij,x, tij,y, tij,z, ωij , ϕij , κij ]
W{tij ,Rij} weight matrix for M-estimation of relative orientation

Σpij

covariance matrix of image coordinates of the homologous points in images
(i, j)

τc{tij ,Rij}
threshold for convergence

View-graph

G view graph
V set of vertices
E set of edges
E+, E− set of consistent and inconsistent edges
Vi vertex corresponding to image i
Vs starting vertex sth sequence
Eij edge between vertices (i, j)
Ei set of edges incident to Vi

Esi set of examined edges in sequence s incident to Vi

d1 vector of distances to starting vertex
D distance matrix
A adjacency matrix
Rj set of rotation estimates for Vj

R+
j , R

−
j set of consistent and inconsistent rotation estimates for Vj

τα threshold for angular distance
τc threshold for the ratio of consistent and inconsistent rotation estimates
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SDP estimation

M Gramian matrix that includes a pairwise multiplication of rotation matrices
M0 matrix that includes the relative rotations
Mij ijth 3× 3 submatrix of M
dMij

residual of M0
ij / convex cost function in Mij

wMij weights for each Mij

Lie algebraic averaging

∆r vector of residuals
J∆rij Jacobian matrix for Lie algebraic averaging
∆r0 vector of reduced relative rotations
∆r?? vector of parameter o�sets, corresponding to R??

W∆r weight matrix for Lie algebraic averaging
λ, ν parameters for weighting function

Translation estimation

t̃?ij rotated relative translations, corresponding to t?ij
Pl

ij object coordinates of Pl intersected from {Ii, Ij}

slij
estimated scale number for the vector between the projection center of Ii and
Pl

ij in the pair {Ii, Ij}

Rγl
ij

matrix to rotate the relative translation tij to the vector between the projection
center of Ii and Pl

ij by angle γlij
p̄l,i
ij projection of Pl

ij in image Ii
∆p̄l

ij average reprojection error of image pair {Ii, Ij}
τr threshold for the reprojection error
sltijk ratio between ‖tj − ti‖ and ‖tk − ti‖ using point Pl

σsltijk
standard deviation of sltijk using point Pl

slt vector including all σsltijk
using point Pl

C constraint matrix
wt vector of weights
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1. Introduction

The determination of three-dimensional information from two-dimensional images that are overlap-

ping in the pictured scene, has been a fundamental task in photogrammetry and computer vision

for many decades. With the imaging process, depth information of the environment is lost. This

depth information can only be restored with further information, e.g. in form of a picture of the

same scene from a di�erent perspective. Essential for this three-dimensional reconstruction is an at

least implicit knowledge about the camera location and the viewing direction, i.e. the orientation

or pose of the images that are involved. The goal of reconstruction from images dates back to at

least the mid-nineteenth century when photography was invented. In the analogue and analytical

eras of photogrammetry, airborne and terrestrial images were processed using e.g. comparators and

analytical plotters in order to generate maps or object models. Since digital image sensors emerged

by the end of the last century and with the increasing computational power in recent years, the �eld

of photogrammetric applications widened. The digital revolution led to a plethora of images. With

almost every modern cellphone having one (or even more) cameras, images can be seen as the most

popular instance for mapping our environment. Naturally, most of these images are not primarily

taken for the purpose of gathering three-dimensional information but taken together they have the

ability for large-scale reconstructions as is shown exemplarily for Notre Dame de Paris in Figure 1.1.

Also for measuring or navigation tasks, images are in most cases a valuable source of information

because of various reasons: they are easy to acquire and easy to access and cameras are relatively

lightweight and cheap, which for many applications are important criteria. Nowadays, the range of

image based applications is large and growing: Cars use cameras for the driver's assistance, moving

robots process captured image sequences for orientation and navigation and unmanned aerial sys-

tems are able to acquire images from almost all thinkable perspectives for an exhaustive mapping

and modelling - only to name a few examples.

The increasing computational power allows for a more and more e�ective processing of the images.

The line of approach in image orientation or reconstruction is the following: On the one hand, the

scale of the reconstructed scene will become larger, which implies more images to be oriented and, on

the other hand, reconstruction will become more accurate, for which, next to the number of images,

the geometrical resolution is responsible. In either way, the computational demand is growing, which

implies besides increasing resources a demand for more e�cient solutions.
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Figure 1.1.: Collection of images of Notre Dame de Paris [Snavely et al., 2006] and photogrammetric
reconstruction using the method proposed in this thesis.

The functional relationship between observations in the image, image orientation parameters and

object points is given by the nonlinear collinearity equations. The best linear unbiased estimation, i.e.

a maximum-likelihood solution, is derived using bundle adjustment. Considering bundle adjustment

as the gold standard for estimation, the image orientation task is reduced to �nding proper initial

values for this nonlinear and thus iterative optimization. Because bundle adjustment is nonlinear

and nonconvex, the quality of the estimated parameters depends on the quality of these initial values.

Thus, a pivotal precept is to determine initial values accurate enough for the bundle adjustment to

converge to the global minimum.

A common strategy for the estimation of initial orientation parameters is a sequential block

enlargement. Starting with a pair of images, initial values for object points and image orientation

parameters are computed by successive spatial intersection and resection. To obtain a grip on

accumulating errors and drift e�ects, intermediate bundle adjustments are necessary. Another way

of computing an initialization is a hierarchical approach. This hierarchy concerns the number of

images, thus, starting with individual subsets of images, a joint orientation is then derived by

successive merging. The third and more recent possibility are global methods. These methods solve

the image orientation jointly for all images and divide the estimation in the space of orientation

parameters instead. In general, rotations are estimated �rst, followed by translations and object

coordinates of homologous points. A division in this manner leads to a simpli�ed solution space,

concerning rotations, translations and points separately. This simpli�cation of the solution space in

the individual computation steps often allows for a convex estimation of the unknown parameters.

In this way, a global optimal solution for the initial orientation is derived.

In this thesis, a novel global image orientation approach is proposed by a combination of several

convex and nonconvex optimizations extended by a rigorous treatment of outliers. In the following

section, this approach is motivated, its basic characteristics are outlined and the objective of this

thesis is formulated.
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Preprocessing Rotation estimation

semide�nite (SDP) estimation

Translation estimation

point track selection Lie algebraic averaging

relative orientations
graphical breadth

propagation

establish constraints &
detect outliers

Figure 1.2.: Schematic illustration of the work�ow.

1.1. Motivation and objective of the thesis

"There are several strategies that may be used to obtain the initial reconstruction, though this area

is still to some extend a black-art."([Hartley & Zisserman, 2003], p. 435).

Given the fact that this quote is more than ten years old, one might hesitate and ask is there

still no gold standard method to compute the initial image orientation? The basic problem of image

orientation has been a central part in photogrammetric and computer vision research for a long

time and many well working approaches evolved since then, competing with various kinds of image

data. However, research in image orientation is still an ongoing matter. Encouraged by the large

interest in research and the growing �eld of convex optimization, in this thesis a novel robust global

image orientation approach is developed, in which a series of convex and nonconvex optimizations

is combined in a new way, delivering a set of accurate initial values for various types of image data.

Individual concepts from related work are captured, combined and extended in order to develop

a versatile model for the estimation of image orientation parameters. The proposed approach is

founded on a set of redundant relative orientations and can be structured into three major stages,

a preprocessing step (1), improving the relative orientations, the estimation of rotations (2) and the

estimation of translations (3). A schematic overview is outlined in Figure 1.2 and explained in the

following.

During preprocessing, relative orientations are computed from image coordinates of homologous

points, using the concept of the essential matrix and then by a subsequent iterative M-estimation in
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a Gauss-Helmert-model. This leads to a maximum likelihood solution and allows a rigorous propa-

gation of variance information that is used in the subsequent stages to incorporate prior knowledge

about the quality of relative orientations in form of individual weights. A major issue in related

research is dealing with erroneous and inconsistent relative orientations (e.g. [Zach et al., 2010;

Enqvist et al., 2011b; Hartley et al., 2011; Chatterjee & Govindu, 2013]). The authors distinguish

between using a robust cost function like the L1 norm and eliminating outliers before the estimation

by applying heuristic constraints. A robust cost function limits the in�uence of outliers on the result,

hence, there is no need for a two-step procedure like carrying out the elimination of outliers and the

estimation separately. On the other hand, outliers remain in the set of observations and may distort

the results. Considering a high accuracy, it is best to eliminate outliers in advance and apply an

unbiased estimation afterwards.

In this thesis, the focus of preprocessing lies in the detection and elimination of inconsistent relative

orientations. This requires an e�ective constraint to distinguish between inliers and outliers, which is

formulated by a propagation of relative rotations along cycles in form of a new breadth-propagation

algorithm in a graphical structure called view-graph. For this algorithm, convergence is proven and

its e�ectiveness is evaluated and assessed.

The estimation of rotations addresses the computation of rotations for all images in a joint coor-

dinate system from redundant preprocessed relative rotations. The original optimization problem is

nonlinear and requires initialization. It is therefore common to relax the problem so that it becomes

linear and directly solvable (e.g. [Govindu, 2001; Martinec & Pajdla, 2007]). Regarding the char-

acteristics of rotations, the solution should be required to be inside the rotation manifold SO(3).

This manifold is a Lie group, which involves nonlinear constraints like a determinant of the rotation

matrix being equal to 1. In order to apply this constraint to a linear optimization problem, it has to

be relaxed as well (e.g. [Arie-Nachimson et al., 2012; Horowitz et al., 2014]). In general, the solution

of the simpli�ed problem does not meet the optimal solution of the original problem. Nonlinear

iterative methods, like the one proposed by Govindu [2004], �nd a maximum likelihood solution in

the Lie algebra, the tangent space of SO(3), and are often more accurate.

The approach presented in this thesis combines the two concepts. Initial rotations are computed

with the convex semide�nite program (SDP) developed in Saunderson et al. [2014], requiring the

solution to be in the convex hull of SO(3), and, subsequently, improved by an iterative Lie algebraic

averaging similar to Govindu [2004]. Both optimizations are assisted by a covariance based weighting

of the involved relative rotations.

For the estimation of translations, the estimated rotations and relative translations are considered.

Several approaches address this problem, they comprise quasiconvex L∞ estimation (e.g. [Hartley

& Scha�alitzky, 2004; Kahl, 2005]) and linear optimization from pairwise or tripletwise constraints

(e.g. [Arie-Nachimson et al., 2012; Cui et al., 2015]). All these methods have certain characteristics,

which have to be taken into account: The drawback of L∞-optimization is its sensitivity to outliers.

Moreover, the maximum residual is minimized, which often does not lead to the desired outcome.
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Using pairwise constraints may lead to problems for collinear images (images taken along a linear

path), whereas models with triplet constraints require a higher overlap between the images.

In this thesis, the linear model of Cui et al. [2015] is used to estimate translations, in which

constraints for image triplets based on pairwise local reconstructions of points are formulated. It

produces accurate results, while not being demanding regarding the overlap between images. The

constraints themselves are sensitive to outliers in the homologous points and relative translations.

Thus, the model is extended by a new outlier detection scheme using pairwise and tripletwise

constraints and a new algorithm to select suitable points taking also the distribution in image space

into account.

In summary, this thesis pursues the following objective: Solve the image orientation problem by

a novel global image orientation approach that achieves accurate orientation parameters, is robust

against outliers in relative orientations and image coordinates of the homologous points and is ap-

plicable to various types of image data. A focus hereby lies on a convex formulation of the involved

optimizations. The task of this thesis is to present an extensive study of this method and to evaluate

the proposed approach in order to show that all characteristics are accomplished.

1.2. Reader's guide

This thesis is structured as follows. Chapter 2 is dedicated to give some basic information about

three major topics, important for this thesis: image orientation parameters, mathematical groups

and manifolds, and convex optimization. In the �rst part, important terminology and di�erent

parameterizations of image orientation parameters are introduced. These are put into context to

Lie groups in the second part. The third part familiarizes the reader with fundamental aspects of

convex optimization like the convexity of functions and sets and strategies for solving such problems.

In Chapter 3, state-of-the-art approaches for the estimation of image orientation parameters are

reviewed. A brief review of the estimation of relative orientations is followed by a study of existing

approaches for sequential, hierarchical and global image orientation. Chapter 4 addresses a detailed

presentation of the new method. After a brief introduction including a comparison of the objective

of this thesis to the state-of-the-art, the three fundamental steps of preprocessing, estimation of

rotations and estimation of translations are explained. The last part of this chapter comprised

information about the bundle adjustment used for a �nal optimization of the orientation parameters.

An exhaustive evaluation of the proposed method is given in Chapter 5 using synthetic data and

real images. Results for the accuracy, robustness and applicability, as well as limitations are shown

and discussed. Finally, Chapter 6 draws conclusions and prospects for future research.
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2. Basics

In this chapter, basic concepts about the image orientation parameters (2.1), groups and manifolds

(2.2) and convex optimization techniques (2.3) are explained. The �rst section gives an insight

into the mathematical description of the image orientation problem, which is the main focus of

this dissertation. The reader is introduced to the concept of relative and global image orientation.

Di�erent parametric representations of the orientation parameters and transitions between these are

discussed. The second section introduces algebraic groups, in particular the rotation group, i.e. the

special orthogonal group SO(3). Using this concept, the algebraic group properties are united with

the geometric properties of a di�erentiable manifold, which plays a key role for the estimation of

rotations. In the third part, basic information is given about convex optimization problems, how

they can be formulated and solved.

2.1. Image orientation parameters

In this section, most important parameters related to image orientation are explained. The term

image in this work is de�ned as the perspective transformation of a scene in the 3D object space to

the 2D image space captured simultaneously through a lens with a unique projection center. Thus,

all projection rays intersect in a single point, which is a simpli�cation of the real imaging process.

This de�nition includes still images as well as frames from image sequences.

This work deals with the estimation of image orientation parameters, which shall be de�ned as

well. In general, one distinguishes between two di�erent types of orientation, interior and exterior

orientation, while both combined describe the geometry of the imaging process. Interior orientation

parameters, also known as intrinsic parameters, model the geometry of the camera. A simple

parameterization includes the calibrated focal length c, also called camera constant, i.e. the distance

between the projection center and the image plane, and the intersection of the optical axis with the

image plane, called the principal point , h = (hx, hy). This set can be enlarged by various parameters

that describe the deviation from the perspective mapping, e.g. distortion coe�cients of the lens.

In the remainder of this work, all interior orientation parameters are assumed to be known and

constant if not stated otherwise. More details on interior orientation and lens distortion can be

found in Kraus [1993] (chapter 3.1) or in Brown [1971]..

The focus of this work lies on the exterior orientation, which is also known as pose or extrinsic

parameters. The exterior orientation describes the location of the projection center and the viewing
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direction with respect to an (arbitrary) object coordinate system and comprises six parameters, three

translations and three rotations, respectively. In the following, the terms translation and location

will be used synonymously to describe the translation parameters between the origin of the object

coordinate system and the location of the projection center.

2.1.1. Single image geometry

It is assumed that for an image Ii the translation is given by ti ∈ R3 and the rotation is described

by the matrix Ri ∈ SO(3) ⊆ R3×3 (the term SO(3) will be introduced in Section 2.2). Further,

let V = {V1 . . .Vn} with Vi = {ti,Ri} be the set of exterior orientations for a set of n images. In

every image Ii, a set of object points is observed with pl
i =

[
pli,x, p

l
i,y

]T
being the 2-dimensional

observation of point Pl =
[
P l
x, P

l
y, P

l
z

]T
in the image coordinate system of image Ii. The mapping

H i
o : P

l → pl
i maps Pl from the object coordinate system to the image coordinate system of image

Ii and is given by the collinearity equations1

pli,x = hx − c
Ri,11(P

l
x − ti,x) +Ri,21(P

l
y − ti,y) +Ri,31(P

l
z − ti,z)

Ri,13(P l
x − ti,x) +Ri,23(P l

y − ti,y) +Ri,33(P l
z − ti,z)

pli,y = hy − c
Ri,12(P

l
x − ti,x) +Ri,22(P

l
y − ti,y) +Ri,32(P

l
z − ti,z)

Ri,13(P l
x − ti,x) +Ri,23(P l

y − ti,y) +Ri,33(P l
z − ti,z)

. (2.1)

A simpler form of these equations is derived using homogeneous coordinates, i.e. pl
i =

[
pli,x, p

l
i,y, 1

]T
and Pl =

[
P l
x, P

l
y, P

l
z, 1

]T
pl
i = KRT

i [I3×3| − ti]P
l , (2.2)

with K being the calibration matrix of the form

K =


c 0 hx

0 c hy

0 0 1

 . (2.3)

The collinearity equations (Equations (2.1) and (2.2)) include a perspective projection from 3D to

2D space, which is not bijective due to the loss of explicit depth information of the projected points.

2.1.2. Two-view geometry

The exterior orientation of two images {Ii, Ij} is determined by twelve independent parameters

{Vi,Vj}. In the line of argument, it is necessary to distinguish global and relative orientation.

The global orientation is determined up to a seven parameter 3D Helmert transformation, which

1In general, observations in digital images are given in the sensor coordinate system. The transformation between
image coordinates and sensor coordinates is bijective and can e.g. be found in Mugnier et al. [2004], pp. 217.
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Figure 2.1.: Relations between di�erent types of image orientation. Each relative orientation (2.1a)
can be transformed to a global orientation (2.1b) by a 3D Helmert transformation.
Likewise, the relation between the global orientation and the absolute orientation (2.1c)
is a 3D Helmert transformation.

allows a mapping into every other 3-dimensional Euclidean coordinate system. Thus, the relative

orientation, describing the orientation of one image with respect to the other, is parameterized

by �ve independent parameters. Using the term global instead of absolute, which is the common

terminology in the photogrammetric literature, clari�es that the orientation is computed in an

arbitrary object coordinate system that is not necessarily a superordinate coordinate system. The

relation between the di�erent coordinate systems is depicted in Figure 2.1.

The relative rotation Rij is de�ned as

Rij = RT
i Rj . (2.4)

Because only directions are measured in images, the scale cannot be estimated, assuming the absence

of further information, which is why the relative translation between images Ii and Ij , tij = tj − ti

is given only up to scale and comprises just a direction.

In the literature, one can �nd two di�erent parameterizations of the relative orientation (e.g.

[Mugnier et al., 2004] pp. 252), independent models and dependent-images. In the remainder of

this work, the dependent-images parameterization is used. It is assumed that the local coordinate

system is situated in the projection center of image Ii, hence ti = 0 and Ri = I3×3 and that the

base has unit length, hence ‖tij‖ = 1.

The parameter set {tij,x, tij,y, tij,z, ωij , ϕij , κij : ‖tij‖ = 1} can be determined from at least �ve

corresponding observations using the coplanarity constraint2, derived from Equation (2.2):

Rj
npl

j ·
(
tij ×

(
Ri

npl
i

))
= 0, (2.5)

with the normalized observation npl
i = K−1pl

i. This constraint requires the base vector tij and

2Here, the Euler angles representation is used (see Section 2.1.3), any other representation is also possible.
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Figure 2.2.: Geometry of exposure: The camera coordinate system [Xc, Y c, Zc] (green) is located in
the projection centers of images Ii and Ij . The relation between the camera coordinate
systems and the object coordinate system [XO, YO, ZO] (black) is given by the global
orientations {ti,Ri} and {tjRj}. The image plane lies at a distance of the camera
constant c in the negative Zc-direction and the optical axis intersects the image plane at
the principal point h. Object point Pl is measured at pl

i and pl
j in the image coordinate

system [x, y] (red). The relative orientation {tij ,Rij} describes the transformation
between [Xci , Y ci , Zci ] and [Xcj , Y cj , Zcj ]. The epipolar plane {Pl, ti, tj} is depicted in
yellow.

the two vectors pointing from each projection center of the two images to the object point (Ri
npl

i

and Rj
npl

j) to lie in the same plane, the so-called epipolar plane. The geometry of exposure of the

two-view case is pictured in Figure 2.2.

Using the skew symmetric matrix [tij ]×, the coplanarity constraint can be written as

npl,T
j RT

j [tij ]×Ri
npl

i = 0. (2.6)

By means of the dependent-images parameterization, the coplanarity constraint (2.6) is reduced to

npl,T
j RT

ij [tij ]×
npl

i = 0, (2.7)

with [tij ]× being composed of the base vector tij that points to tj and is constrained to be of length

one due to the scale ambiguity. The central term in equation (2.7) is commonly referred to as the

essential matrix E, i.e. E = RT
ij [tij ]×, a rank 2 matrix with zero determinant. This matrix can

be estimated by at minimum of �ve homologous points with the 5-point algorithm [Nistér, 2004;

Stewenius et al., 2006].

Given a valid essential matrix, the parameters of the relative orientation are typically derived

via factorization (Hartley & Zisserman [2003] pp. 239). The orientation is retrieved only up to a

four-fold ambiguity. A geometrically valid solution is found by spatial intersection of a homologous

point that is required to lie in front of both cameras, thereby ful�lling the cheirality constraint .
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2.1.3. Rotations - various representations

In the previous section, relative and global rotations have been introduced as matrices in R3×3. These

matrices are not arbitrary but obey certain characteristics, called the orthonormality constraints

1. The column vectors of a rotation matrix are pairwise orthogonal.

2. The column vectors are of length one, which implies that the determinant of a rotation matrix

is equal to one.

Every matrix satisfying these constraints is a rotation matrix. Each of these two constraints pose

three conditions, thus a 3 × 3 rotation matrix with its nine elements is parameterized by three

independent variables. In the following, some important rotation representations are outlined, which

are used in the proposed method.

Rotations - Euler angles

One representation is given by the three Euler angles {ω, ϕ, κ}. Each of these angles comprises

the rotation around one of the three coordinate axes. This representation is not redundant but a

rotation composed by Euler angles is not unique, because the overall rotation depends on the order

of the three individual rotations. A common order in photogrammetry is ωX → φY → κZ and is

also used in this work:

R =


1 0 0

0 cosω − sinω

0 sinω cosω




cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ



cosκ − sinκ 0

sinκ cosκ 0

0 0 1

 (2.8)

Even if the order is �xed, the mapping from R to {ω, ϕ, κ} is ambiguous due to the periodicity

of the trigonometric functions. Moreover, it has to be de�ned whether the axes stay tight or are

rotated after every individual rotation. Certain con�gurations lead to singularities (gimbal lock) so

that two angles cannot be distinguished anymore.

Rotations - axis-angle representation

Every rotation can be described as a rotation by some angle α ∈ [0, π] around an arbitrary axis

r̄, ‖r̄‖ = 1. This representation is called the axis-angle representation and is given by r = αr̄.

A closed 3-ball B3 ⊂ R3 with radius π is a common representation of the set of all possible

rotations. Every point inside B3 represents a rotation by an angle equivalent to the distance to

the origin. Points on the boundary of this ball (i.e. rotations by α = π) are not unique because

diametrically opposite points represent equivalent rotations, i.e. r =̂ − r ⇔ ‖r‖ = π. Thus, the

mapping from r to R is surjective (i.e. every rotation R is mapped by at least one r) but not

injective (one-to-one) for rotations by π. The mapping is given by the exponential map and can be
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computed using Rodrigues' formula (see proof in Appendix C.1 or e.g. Faugeras [1993], p. 268):

R = exp
(
[r]×

)
= I3×3 + sin (α) [r̄]× + (1− cos (α)) [r̄]2× . (2.9)

The inverse mapping is given by the logarithm map (see proof in Appendix C.2):

[r]× = log (R) =

03×3 if R = I3×3

arcsin ‖W‖2 W
‖W‖2 else,

(2.10)

with W =
R−RT

2
.

It is important to note that, because the exponential map is not injective, the logarithm map is

not unique for rotations by π (see an alternative computation in Appendix C.3). This topic will be

further studied in Section 2.2.2.

Rotations - Quaternions

Quaternions can be seen as an extension of complex numbers and consist of real 4-vectors in R4,

forming the so called quaternion sphere Q. They are constructed by a scalar s (the real part)

and a vector v (the imaginary part), q = (s,v), and have certain rules for computation (see e.g.

[Förstner & Wrobel, 2004], pp. 47). Rotations are represented by unit quaternions, hence quater-

nions that ful�ll ‖q‖ = 1. There is a simple connection to the axis-angle representation, which is

q = (cos (α/2) , sin (α/2) r̄). Quaternions are sign-ambiguous which means that q and −q represent

the same rotation. A geometric interpretation of unit quaternions is the quaternion sphere (the

unit sphere S3 in R4). If the rotation angle is restricted to [0, π], as for the axis-angle representa-

tion, the set of unit quaternions is limited to one hemisphere of S3 with quaternions on the equator

corresponding to rotations by angle π. A mapping to R is given by:

R =
(
s2 − vTv

)
I3×3 + 2vvT + 2s [v]× . (2.11)

Note that this mapping is two-to-one for α = π. This is easy to prove because if α = π then s = 0

and (2.11) is reduced to an equation including only terms quadratic in v that are insensitive to

di�erent signs. The computation of a quaternion given a rotation matrix R is studied in Appendix

D.

2.1.4. Rotations - norms and metrics

When working with rotations, it is necessary to de�ne a norm that allows to describe the similarity

(or dissimilarity) of two rotations. Each of the representations introduced in the previous section

induces a di�erent norm. A well-known norm using matrices is the Frobenius norm, which is equal

to the Euclidean norm for Rn×n → Rn2
, considering all matrix elements. This leads to the so called
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chordal distance. Having two rotation matrices, Ri and Rj , the chordal distance is de�ned as:

dchordal (Ri,Rj) = ‖Ri −Rj‖F , (2.12)

with ‖·‖F denoting the Frobenius norm. Because of the sign ambiguity of quaternions, the quaternion

distance cannot just be deduced from the chordal distance as a distance in R4, but an easy extension

covers ambiguous signs [Hartley et al., 2013]:

dquaternion (Ri,Rj) = min (‖qi − qj‖2, ‖qi + qj‖2) . (2.13)

The most intuitive norm for rotations is the angular norm which describes the angle of the relative

rotation Rij = RT
i Rj .

dα (Rij) = ‖ log (Rij) ‖2 = ‖rij‖2 = α. (2.14)

Hartley et al. [2013] show that these di�erent metrics are related to each other:

dchordal = 2
√
2 sin (α/2) , dquaternion = 2 sin (α/4) . (2.15)

2.2. Groups and manifolds

Image orientation parameters consist of 3D rotations and translations. As a consequence, one can

say that the set of all possible rotation matrices forms a set, which is a subset of all 3× 3 matrices.

In the following, a brief overview of the basic concepts of groups, Lie groups and Lie algebras will

be provided. A comprehensive study of these topics can be found in Gilmore [2008]; Sattinger &

Weaver [2013].

Let us assume a set G = {A,B,C}. The set G and a combinatorial operation ◦ form an algebraic

group G, represented by the tupel (G, ◦) if, and only if, the following four axioms are valid:

(i) Closure under operation: every combination of two elements of the group with the associated

operation results in an element of the group: A ◦B ∈ G.

(ii) Associativity: A ◦ (B ◦ C) = (A ◦B) ◦ C.

(iii) Identity element: there exists an element I in G that does not change another element of the

group when both are combined: I ◦A = A ◦ I = A.

(iv) Inverse element: for each element A inG there exists an element A−1 inG so that a combination

results in the identity element: A−1 ◦A = A ◦A−1 = I.

These axioms can be seen as algebraic properties of a group.
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2.2.1. The concept of Lie groups

The concept of Lie groups, named after Norwegian mathematician Sophus Lie, links these algebraic

properties with geometry. Each element in the group is identi�ed with a point in a topological

space - a manifold . A manifold is a space that appears Euclidean3 in a local neighborhood but is

considerably di�erent on a global scale. For example, the neighborhood of a point on the unit sphere

S2 ⊂ R3 looks like a part of the plane R2, which means S2 and R2 are topologically equivalent in

that neighborhood. Globally, though, the sphere certainly is not Euclidean but spherical.

A group is a Lie group if, and only if, the following two axioms are valid:

(v) Smoothness of the combination: the combination of two group elements A ◦B = C is di�eren-

tiable.

(vi) Smoothness of the group inversion: the inversion of a group element A−1 is di�erentiable.

In the following the connection between Lie groups and image orientation parameters, rotation

matrices in particular, is presented brie�y.

SO(3) - the rotation group

How do the de�nitions given above apply to 3D rotation matrices? With matrix multiplication

as combinatorial operation, axioms (i) and (ii) of an algebraic group are ful�lled. The identity

element is the 3D identity matrix I3×3 and the inverse is equal to the transposed element R−1 = RT

(axioms (iii) and (iv)). Thus, the 3D rotation matrices form an algebraic group. This group

of rotation matrices is called the special orthogonal group SO(n) with n denoting the dimension.

Hence, in the course of this thesis the focus will be on the group SO(3): SO(3) = {R ∈ R3×3 :

RTR = I3×3,detR = 1}. This group is a subgroup of the orthogonal group O(3), which includes

all orthogonal 3× 3 matrices, i.e. those matrices that ful�ll only the �rst of the two criteria de�ned

in Section 2.1.3. In contrast to O(3), SO(3) only includes matrices with a determinant equal to 1,

which excludes re�ections.

Besides the algebraic axioms also the topological axioms (v) and (vi) are ful�lled for rotation

matrices. More precisely, matrix multiplication (axiom (v)) and transposition (axiom (vi)) are

di�erentiable functions. This means that SO(3) is a Lie group and the set of 3D rotation matrices

is a manifold.

Another group, important for the topic of this thesis is the special Euclidean group SE(3), which

also includes translations: EO(3) = {
(
R t
0 1

)
∈ R4×4 : R ∈ SO(3), t ∈ R3}. In the method that is

presented in this work, this group is not used.

3A Euclidean space is a space described by real Cartesian coordinates.
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Figure 2.3.: Gnomonic projection of a spheric tri-
angle on the S2 manifold in R3 onto
a tangent plane. The colored dashed
lines show the geodesics. Points
on the opposite side of the sphere
project to the same point on the
plane.

SO(3) Q so(3)

SO(3) - 1− 2 1− 1a

Q 2− 1 − 2− 1
so(3) 1− 1b 1− 2 −

Table 2.1.: Mappings between di�er-
ent rotation representa-
tions using the row as
from and the column as
to, e.g. it is a one-to-
two mapping from SO(3)
to Q.

anot determined for α = π, see Appendix
C.3

b2− 1 for α = π

2.2.2. Lie algebra

A Lie algebra g is the structure that results from the linearization of a Lie group G at the identity

element. It is a linear vector space considering addition and scalar multiplication, thus every linear

combination of two elements {A,B} ∈ g, e.g. C = a ·A+b ·B, is also an element of g. Moreover, the

algebra is closed under commutation, which means that the commutator C = [A,B] = (AB −BA)

also lies in g (in terms of a Lie algebra, the commutator is in general called the Lie bracket).

The linear vector space can be seen as a tangent space to the Lie group at the identity element

which allows various calculations, for instance the computation of an average, which is an important

feature for the estimation of rotations (cf. next subsection). The mappings between the Lie group

and the Lie algebra, thus the linearization and its inverse, are given by the logarithm map and the

exponential map (cf. Section 2.1.3).

so(3) - the rotation algebra

The rotation algebra so(3) is the linearization of SO(3), which is derived in Appendix C including

a proof for the exponential and logarithm map. Their role as transition between group and algebra,

in other words between manifold and tangent space, enhances the importance of the two mappings.

We have log (·) : SO(3) → so(3) and exp (·) : so(3) → SO(3). As a consequence, the axis-angle
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representation of rotations is the Lie algebra so(3) of SO(3), strictly speaking, its skew-symmetric

form:

[r]× =


0 −rz ry

rz 0 −rx
−ry rx 0

 ∈ so(3). (2.16)

Although in practice the limitation 0 ≤ ‖r‖ ≤ π is valid to limit ambiguity, so(3) consists of the

set of all 3 × 3 skew-symmetric matrices, irrespective of its norm (note that the matrix norm of

a skew-symmetric matrix is related to the norm of its vectorial components). This underlines the

non-injectivity of the exponential map. Due to these limitations of the logarithm and exponential

map, quaternions are often used instead of rotation matrices in practical applications (see e.g.

Hartley et al. [2011]), where the map is substantially simpler.

The mapping from the quaternion sphere Q to so(3) is two-to-one and can be visually interpreted

as a gnomonic projection as pointed out in Hartley et al. [2013] and as it is exemplarily shown in

Figure 2.3 for a lower dimension. Note that geodesics on the sphere map to straight lines on the

plane and that points on the geodesic that lies in the plane parallel to the tangent plane map to

in�nity. Thus, the mapping plane of so(3) is the projective space P3 = R3∪Π∞. Table 2.1 shows the

ambiguities in the di�erent mappings. A mapping SO(3) → so(3) via the quaternion sphere is in

total one-to-one, although the two individual mappings SO(3)→ Q and Q→ so(3) are one-to-two

and two-to-one, respectively. In the remainder of this work, the exponential and logarithm map are

synonymous for forwards and backwards projection between SO(3) and so(3), irrespective of their

implementation.

2.3. Convex optimization

This section is dedicated to a brief introduction into the topic of convex optimization and the way

optimization problems are formulated in this thesis. A focus lies on convex optimization problems,

which can be solved globally. The main requirements, convex functions and sets, will be reviewed

in 2.3.1, followed by a presentation of the most important convex optimization problems in 2.3.2. A

general solving strategy is outlined in 2.3.3. For a more comprehensive review about convex optimi-

zation, the book of Boyd & Vandenberghe [2004] is recommended, the topic of convex relaxation in

the context of photogrammetric and computer vision applications is treated in Cremers et al. [2011].

The �rst question arising when someone is dealing with mathematical optimization is �why would

anyone optimize? �. A problem, for which no unique solution exists, requires optimization. For the

given problem of image orientation in principle there exists an in�nitely large number of possible

solutions. Optimization aims at �nding the best solution with respect to a given cost function

based on the data that has been observed. More generally, in many applications in computer vision,

statistics, or machine learning the goal is to �nd a model that best �ts the given data.
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Let there be the following optimization problem:

minimize f0(x) (2.17)

subject to fi(x) ≤ 0, i = 1, . . . ,m

gj(x) = 0, j = 1, . . . , p .

The vector x ∈ Rn contains the unknown parameters of the model that are required to ful�ll certain

conditions imposed by inequality constraint functions f1, . . . fm and equality constraint functions

g1, . . . gp. Often, these constraints are based on prior knowledge about the parameters. They de�ne

the set of feasible parameters S for the model to be solved, narrowing the search space. Taking the

image orientation problem, for example: for a set of images having homologous points, a solution

in which the images are captured in a way, which renders any overlap regarding the pictured scene

impossible, is not desired.

Among all x that satisfy these constraints, the best solution is an x? that minimizes the objective

or cost function f0(x). Usually, the objective function represents the error of the model with respect

to the observed data. Thus, in the remainder of this thesis, an optimal solution shows a minimum

of the objective function. Hence, the optimal value y? = f0(x
?) of the optimization problem (2.17)

is de�ned as

y? = inf{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, gi(x) = 0, i = 1, . . . , p} .

In terms of mathematical optimization, most optimization problems are intractable which means

that they cannot be solved. Actually, this merely implies that there is no guarantee to �nd the

global optimal solution, i.e. the lowest value of the given objective function f0(x) satisfying all

corresponding constraints. These optimization problems are referred to as nonconvex optimization

problems. Of course, for many applications, this lack of guarantee is not a substantial problem,

because with accurate initialization or prior knowledge, a feasible solution can be found, which is

often su�cient for the given purpose. In general, the solution found is a local optimum, i.e. an

optimal solution within a certain neighborhood in the solution space that is not necessarily the

global optimum. However, even if the found solution is globally optimal, it generally lacks proof

of this fact. In most cases, the only way for such a nonconvex problem to �nd a global optimal

solution or to prove that a given solution is globally optimal is to perform a parameter space search.

Instead of examining the whole parameter space exhaustively, more e�cient methods evolved like

the tree-based branch and bound method [Land & Doig, 1960; Clausen, 1999]. Starting from the root

of the tree that represents the whole parameter set, individual branches of the tree are evaluated to

compute bounds on the optimal values. Only branches that show an improvement to the current

bound are investigated further. With every branch, the search space is narrowed until the necessary

level of precision is reached. It is easily imaginable that this search becomes intractable with growing

dimension of the parameter space n. Thus, for many complex optimization problems it remains

impossible to guarantee that a global optimal solution has been found.
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f(x2)

(a) convex function
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(b) �rst-order convexity

f f

f(x1) +∇f(x1)(x− x1)

Figure 2.4.: Visualization of two convexity constraints for a function. De�nition of a convex function
(2.4a) and the �rst-order constraint (2.4b).

An exception to these problems are convex optimization problems. Convex optimization problems

only have one minimum, every local minimum is also the global minimum. Simply put, every

gradient descent method will converge to the global optimum. Regarding the general formulation of

an optimization problem in (2.17), there are certain requirements for a problem to be convex: First,

equality constraints are linear in x and second, the objective function and the inequality constraints

are convex. In the following sections, these requirements are presented in more detail.

2.3.1. Convex functions and convex sets

A function f : Rn → R is convex if, and only if, the domain of f , dom f , is convex and for any

{x1,x2} ∈ dom f it is:

f (θx1 + (1− θ)x2) ≤ θf (x1) + (1− θ) f (x2) , θ ∈ [0, 1] . (2.18)

A graphic interpretation of inequality (2.18) is shown in Figure 2.4a. The left side of the inequality

(2.18) describes function f in the interval [x1,x2], the right side describes a linear connection between

x1 and x2. Due to positive curvature, the function itself is always below or equal to a linear

connection of two points on that function. If f is di�erentiable, another condition for convexity can

be formulated:

f(x1) +∇f(x1)(x− x1) ≤ f. (2.19)

This �rst-order condition is visualized in Figure 2.4b. It states that a �rst-order Taylor approxi-

mation of f at any point x1 ∈ dom f is always below or equal to f . Inequality (2.19) reveals an

important property of convex functions: it is possible to conclude global from local information.

The Taylor approximation at any point is a global underestimator of the function, i.e. it gives a

lower bound for the optimal value. For example, if at position x1 the �rst derivative is zero, i.e.

∇f(x1) = 0, inequality (2.19) reduces to f(x1) ≤ f . The function f lies above or is equal to f(x1),

which proves that in a convex function every local minimum is the global minimum. Thus, x1 is

the global optimal value. Note that a function f is concave (a function with negative curvature

only) if the negative function −f is convex. Moreover, it is noteworthy that according to (2.18) and
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(a) convex set (b) nonconvex set (c) convex hull

Figure 2.5.: Visualization of convexity constraint for a set (2.5a), a counterexample (2.5b) and a
convexi�cation of a nonconvex set via the convex hull (2.5c).

(2.19) a linear function which has zero curvature is both, convex and concave. This implies that an

optimization problem with a linear objective function is a convex optimization problem.

A set D is convex if, and only if, for any {x1,x2} ∈ D

θx1 + (1− θ)x2 ∈ D, θ ∈ [0, 1] . (2.20)

This property is visualized in Figure 2.5a and 2.5b: A connection between any two points in a

set must lie entirely inside the set. Besides convex functions and convex sets, the concept of a

convex hull is relevant for the understanding of this thesis. If a set D is nonconvex, the convex hull

C = conv(D) of this set is the smallest convex set that contains D, i.e. D ⊆ C. It can be de�ned as

the sum of all convex combinations of points di in D:

conv(D) =

{
k∑

i=1

βi · di : di ∈ D, k ∈ N,
k∑

i=1

βi = 1, βi ≥ 0

}
(2.21)

Dealing with convex optimization, one has to verify whether a function or set is convex (or

concave). Whereas this is easy to recognize for some functions or sets like a linear function, for

instance, for other functions one might evaluate the criteria de�ned in (2.18) and (2.20) but often

this leads to a large e�ort. A more elegant way to verify convexity is via so called convex calculus

rules. These rules describe operations which, applied to convex sets or functions, preserve the

convexity properties. For example, the sum or the pointwise maximum of n convex functions or the

intersection of n convex sets are convex. Generally, the composition of convex functions leads to a

convex function, e.g. g(f(x)) is convex, if g and f are convex. Hence, the goal of convex calculus is

to describe a set or function as a selection of sets or functions known to be convex combined with

convexity preserving operations.

If an optimization problem is nonconvex, because the objective function or constraints are non-

convex, the only way to derive a convex optimization problem is via convex relaxation. Relaxation

implies that nonconvex constraints are dropped or simpli�ed leading to convex sets and functions.

This modi�cation of the original optimization problem often also a�ects the optimal solution, which
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x?

−∇f0(x)

x?

S

(a) linear program (b) quadratic program

S

Figure 2.6.: Geometric interpretation of an LP (2.6a) and a QP (2.6b) in R2. The feasible set S is
depicted as shaded polyhedron, de�ned by m = 6 inequality constraints Gx ≤ h, and
the objective function is visualized using dashed iso-lines. The gradients of the objective
functions are c and ∇f(x) of the LP and the QP, respectively. The negative gradients
point in the direction of maximum descent.

sometimes entails a subsequent adaptation of the results. For instance, in a boolean linear optimi-

zation problem, the constraint xi ∈ {0, 1}, which requires the components of x to be either zero or

one, is nonconvex, because 0 and 1 cannot be connected without leaving the set {0, 1}. A typical

relaxation of this optimization problem is to replace the boolean constraint with xi ∈ [0, 1], which

allows every component to be an element of the interval [0, 1]. Often, one is actually interested

in boolean values. Hence, after solving the convex relaxed optimization problem the real-valued

solution has to be adapted, e.g. using a threshold of 0.5, to provide the desired outcome.

2.3.2. Convex optimization problems

In this section, some fundamental convex optimization problems that can be derived from the stan-

dard form of optimization problems given in (2.17) are presented. In the terminology of mathematical

optimization, it is common to use the term program as a synonym for optimization problem. In a

linear program (LP), the objective function and the constraint functions are a�ne (or linear). An

LP reads as

minimize cTx+ d (2.22)

subject to Gx ≤ h

Ax = b,

with the constant d, the known vector c, the parameter vector x, {c,x} ∈ Rn, G ∈ Rm×n and

A ∈ Rp×n. Geometrically, an LP can be interpreted as solving a linear objective function constrained

by a convex polyhedron as depicted in Figure 2.6a. The optimal solution of an LP always lies at

the edge of the polyhedron, i.e. the feasible set. If there is a unique solution, it is at a vertex of the
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polyhedron.

Convex Quadratic programs (QP) are optimization problems with a convex quadratic objective

function and a�ne constraints,

minimize (1/2)xTPx+ cTx+ d (2.23)

subject to Gx ≤ h

Ax = b,

where P is positive semide�nite, i.e. xTPx ≥ 0. QP have the same constraints as LP and can be

seen as a generalization of LP; with P = 0 every QP can be transformed to an LP. In contrast to

LP, the optimal solution can either be situated at the edge of the polyhedron or at the minimum

value of the objective function if the minimum value is feasible (see Figure 2.6b).

Another important type of optimization problems is the semide�nite program (SDP). A SDP has

the form

minimize cTx+ d (2.24)

subject to F0 +
m∑
i=1

xiFi � 0

Ax = b,

with symmetric matrices F0, . . .Fm. The inequality in (2.24) is a linear matrix inequality (LMI) (in

contrast to a componentwise inequality) and is denoted by�. This LMI means that the left-hand side

is negative semide�nite, i.e. all eigenvalues of the matrix are nonpositive. Note that a formulation

that requires a positive semide�nite matrix is possible, as well. A SDP is also a generalization of

an LP. Both programs minimize a linear objective function. If the matrices F0, . . .Fm are diagonal,

the LMI is equivalent to the componentwise inequality constraints of an LP. Likewise, the inequality

constraints of an LP can be formulated as an LMI with Gx − h as a diagonal matrix. For further

information on semide�nite programming the reader is referred to Vandenberghe & Boyd [1996].

2.3.3. Solving convex optimization problems

Several approaches exist for solving a convex optimization problem. For special problems like a

QP with a linear relation between observations and unknowns and without equality or inequality

constraints, i.e. an unconstrained linear least squares problem, an analytic solution exists given by

the normal equation system. The same counts for a set of linear homogeneous equations which can

be solved using a singular value decomposition (SVD). In many cases, however, constrained problems

have to be solved. State-of-the-art in solving these problems are so called interior point methods,

primal-dual interior point methods, in particular. These methods can be applied to most types of

optimization problems and are solvable in polynomial time [Wright, 2005].
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In order to give an insight into these methods, the concept of the Lagrange dual function shall be

reviewed at this place. The Lagrange function L : Rn × Rm × Rp → R of an optimization problem

such as (2.17), which now is referred to as the primal problem, incorporates inequality and equality

constraints scaled with the Lagrangian multipliers λ and ν,

L (x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjgj(x). (2.25)

One can imagine the individual Lagrangian multipliers λi and νj as prices that charge the Lagrange

function if a constraint is violated, i.e. fi(x) > 0, gj(x) 6= 0. For a feasible solution x̃ ∈ S (a solution

that ful�lls every constraint), L (x,λ,ν) provides a lower bound for the optimization problem, if

λ ≥ 0, because the terms in the �rst and second sum are either nonpositive or zero. The Lagrange

dual function g : Rm × Rp → R is the pointwise minimum of L,

g (λ,ν) = inf
x

L (x,λ,ν) . (2.26)

For a �xed x, g (λ,ν) comprises the in�mum of a set of a�ne functions of (λ,ν) and is therefore

a concave function. The relation between the Lagrangian dual and the primal objective function

reads as:

g (λ,ν) = inf
x

L (x,λ,ν) ≤ L (x̃,λ,ν) ≤ f0(x̃). (2.27)

Knowing this relationship, one can formulate the dual problem to the given primal problem in (2.17):

maximize g (λ,ν) (2.28)

subject to λ ≥ 0.

Because the Lagrange dual function is a global underestimator of the primal objective function, one

has to maximize g (λ,ν) in order to �nd a best lower bound to the primal problem. Let p? be the

optimal value of the primal and d? of the dual problem then the di�erence δdual = p? − d? is called

the duality gap.

Assuming a convex optimization problem, there are �ve conditions the primal and dual parameters

x?,λ?,ν? have to ful�ll in order to be considered as primal and dual optimal with zero duality gap.

These conditions are called Karush-Kuhn-Tucker (KKT) conditions:

fi(x
?) ≤ 0, i = 1, . . . ,m (2.29)

gj(x
?) = 0, j = 1, . . . , p (2.30)

λ?
i ≥ 0, i = 1, . . . ,m (2.31)

λ?
i fi(x

?) = 0, i = 1, . . . ,m (2.32)

∇f0(x?) +

m∑
i=1

λ?
i∇fi(x?) +

p∑
j=1

ν?j∇gj(x?) = 0 . (2.33)
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Figure 2.7.: The log-barrier function Ĩt(fi(x)) for di�erent t compared to the nondi�erentiable in-
dicator function (2.7a). Visualization of the central path for the example in Figure
2.6a (2.7b). The dashed curves inside S are contour plots of the combined log-barrier
function φ(x, t) for di�erent t. The central path results from the tangent point of the
iso-lines of f0(x) (depicted as dashed lines with gradient c) at the iso-lines of φ(x, t).

Equations (2.29) and (2.30) are the constraints of the primal problem (2.17), Equation (2.31) is

the constraint of the dual problem (2.28). The fourth condition (2.32) is known as complementary

slackness. If λ?
i > 0 then the ith constraint is tight, i.e. λ?

i > 0 =⇒ fi(x
?) = 0. Equivalently, the

constraint is lose, i.e. fi(x
?) < 0, if λ?

i = 0. In other words, a lose constraint could be dropped

without changing the solution of the optimization problem. The �fth condition (2.33) requires the

gradient of the Lagrange function to be zero which implies a global optimum of a convex optimization

problem.

Interior point methods rely on solving the KKT conditions for an optimization problem with equal-

ity constraints only. Given a problem whose objective function and inequality constraint functions

are twice di�erentiable, the goal is to relax this problem and approximate a problem free of inequal-

ity constraints in order to apply an unconstrained optimization approach like Newton's method (cf.

[Dennis Jr & Schnabel, 1996]). One way of such a relaxation is via a log-barrier function,

Ĩt(u) = −(1/t) log(−u). (2.34)

This function converges to∞ for u→ 0 and approximates a binary indicator function I(u), I(u) = 0

if u ≤ 0 and I(u) =∞ if u > 0. The indicator function can be interpreted as a cost for the violation

of an inequality constraint as in (2.17), shown in Figure 2.7a by a dashed line. For higher t, the

approximation becomes more exact as can be seen by the three curves in Figure 2.7a. Ĩt(u) is convex

and di�erentiable and an approximation to the optimization problem (2.17) is derived as

minimize f0(x) + φ(x, t), φ(x, t) =

m∑
i=1

Ĩt(fi(x)) (2.35)

subject to gj(x) = 0, j = 1, . . . , p,
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with the problem speci�c log-barrier function φ(x).

In practice, the primal problem (2.35) and its dual are solved iteratively with increasing t. For

every t, the optimal value x?
t lies inside the feasible set S and moves towards the global optimum

x? for increasing t. The set of all solutions x?
t forms the central path, depicted in Figure 2.7b. It

intersects the iso-lines of f0(x) at the tangent points of f0(x) with φ(x, t). The duality gap results in

δdual,t = m/t, hence with t→∞ the duality gap vanishes. This allows a formulation of a stopping

criterion based on a desired accuracy ε, thus the iterative procedure stops if m/t < ε.
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3. State-of-the-art

The topics related to this thesis can be assigned to two research communities: photogrammetry and

computer vision. Image orientation is a problem investigated for a long time in photogrammetry

and more recently also by the computer vision community. In recent years, driving forces behind

the development of innovative algorithms for image orientation were the growing number of pub-

licly available image data, the need for new vision based navigation applications, e.g. in the �eld

of robotics, and the desire for highly automated large scale mapping. As part of these develop-

ments, many di�erent image orientation methods were developed that exhibit various advantages

and disadvantages considering the accuracy, e�ciency and variability regarding di�erent kinds of

image data. Image orientation encounters a growing number of applications including terrestrial

or airborne 3D reconstruction for architectural, cultural heritage, archaeological or topographical

mapping purposes, quality control of industrial products of di�erent scales but also real time posi-

tioning and navigation for moving platforms, so called on-line orientation or SLAM (simultaneous

localization and mapping) [Davison et al., 2007; Konolige & Agrawal, 2008; Grisetti et al., 2010].

While SLAM in principle is very similar to the problem discussed in this thesis, the focus of the

method described in this work lies on o�-line orientation, i.e. not in real-time.

The early beginnings of the orientation of images date back to the second half of the 19th century

[Grün & Huang, 2013]. It is well established that the optimal solution to the problem of (o�-line)

image orientation is found via robust bundle adjustment (see e.g. [Schwidefsky & Ackermann,

1976]). Triggs et al. [2000] give a more recent comprehensive overview over current state of bundle

adjustment. It is a nonlinear, nonconvex and unconstrained least squares optimization which can

be solved analytically, although the authors mention that the frequent use of robust cost functions

like M-estimation functions or other adaptations lead to the fact that the optimization problem

signi�cantly di�ers from an ordinary least squares model. The nonlinearity and nonconvexity of the

optimization require an initialization of the unknown orientation parameters and object coordinates.

Approaches for the estimation of these initial values can be classi�ed into three categories: sequential,

hierarchical and global models.

This chapter is dedicated to give an overview over existing work in the related research that is

relevant to this thesis. It is structured according to the work�ow of the image orientation proce-

dure and starts with a presentation of the state-of-the-art in the description of image features and

computation of relative orientations in Section 3.1. This is followed by a study of the most impor-

tant relating works on sequential and hierarchical (Section 3.2) as well as global image orientation

(Section 3.3).
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3.1. Image correspondences and relative orientations

In this section, the state-of-the-art in the computation of image correspondences and relative orien-

tations is reviewed. Image correspondences are the foundation of the model presented in this work,

although their computation will not be explained in detail. Nevertheless, the computation of image

correspondences is an active �eld of research. By the end of the last century, various feature de-

scriptors emerged, which allow the automatic detection and matching of point or line-features (e.g.

[Harris & Stephens, 1988; Förstner, 1986]). One of the the most widely used descriptors is the scale

invariant feature transform, better known as the SIFT descriptor [Lowe, 2004], which is invariant to

di�erent scales and rotations. Various extensions to SIFT were developed in the following years like

the SURF descriptor (speeded up robust features) of Bay et al. [2008] that primarily allows a faster

computation thanks to the use of integral images. More recently, many works about learning image

descriptors were presented (e.g. [Brown et al., 2011; Simonyan et al., 2012; Trzcinski et al., 2015;

Chen et al., 2016]). While descriptors like SIFT and SURF have a constant formulation with only

few adaptive parameters, the latter methods aim at learning an optimal model for the description

of speci�c feature points that are found by any feature point detector. In terms of accuracy and

computation time (without taking the time for training into consideration) they often outperform

descriptors like SIFT and SURF.

In the model presented in this work, as in most models for the estimation of image orientations,

at a speci�c point pairwise or tripletwise relative orientations are computed. Centerpieces are linear

estimations based on image correspondences like the fundamental and essential matrix for two

views [Faugeras, 1992; Hartley, 1992; Luong & Faugeras, 1996] or the trifocal tensor for three

views [Shashua, 1995; Hartley, 1997; Ressl, 2000]. Relative orientation parameters can be derived

from these entities (e.g. [Hartley & Zisserman, 2003]). Although the estimation of these matrices

or tensors is linear and therefore a straight forward process, it su�ers from outliers in the image

correspondences and the occurrence of degeneracy for speci�c con�gurations. It is general practice to

eliminate outliers using random sample consensus (RANSAC ) [Fischler & Bolles, 1981]. There are

several attempts to extend this randomized approach and formulate more sophisticated algorithms

for this task. Torr et al. [1998] propose a combination of RANSAC with a model selection approach

based on a scoring function to distinguish between degenerate and non-degenerate cases. This model

is further improved in Torr & Zisserman [2000] and Torr & [2002]. In Torr & Zisserman [2000],

the cost function is based on the log likelihood of the solution, instead of maximizing the size of the

inlier set. Inliers are thus scored based on their reprojection error, which has a geometrically more

meaningful interpretation than only the number of inliers. Torr & [2002] extends this model by

directly optimizing the posterior of the Bayesian formulation.

In case of the essential matrix, which requires knowledge of the interior orientation of the camera,

the risk of a degenerate case is much smaller. A solution for the essential matrix is found by

the �ve-point algorithm presented in Nistér [2004] and extended in Stewenius et al. [2006], which

is often applied in combination with RANSAC. In the �ve-point algorithm an algebraic objective
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function is minimized, whereas a distinction between inliers and outliers is favorably based on the

geometric reprojection error. Moreover, the heuristic nature of RANSAC lacks the guarantee of

the solution to be optimal. Yang et al. [2014], for example, state that this may lead to inferior

solutions. Several approaches propose a globally optimal estimation of the essential matrix, e.g.

[Hartley & Kahl, 2007; Enqvist et al., 2011a; Yang et al., 2014]. Often, the global optimum is

reached with a branch-and-bound search over di�erent parameter spaces representing the essential

matrix. Hartley & Kahl [2007] were inspired by the idea that once the relative rotation is known,

the relative translation can be estimated in a quasiconvex optimization using the L∞ norm of the

reprojection error. They perform a branch-and-bound search over the space of rotations SO(3)

and evaluate the corresponding translations using second order cone programming (SOCP) [Boyd &

Vandenberghe, 2004]. Yang et al. [2014] propose a model that �nds a global optimal solution with

respect to a geometric error using a branch-and-bound search over the essential manifold, which is

de�ned explicitely as a 5D manifold SO(3)× (SO(3)\SO(2)). This manifold can be interpreted as

the independent images representation of the relative orientation.

Iterative methods for the estimation of the relative orientation parameters in general lead to more

accurate results than can be derived from the essential matrix. Horn [1990] describes an iterative

algorithm using unit quaternions that is also applicable for the case in which no initial guess is

available. He shows that given a large number of correspondences this method will reach the global

optimum. Moreover a detailed discussion about critical surfaces is given. An iterative estimation in

a Gauss-Helmert-model is described in Förstner et al. [2004].

Synthesis - image correspondences and relative orientations

In the method proposed in this thesis, an essential matrix is estimated by the �ve-point algorithm

based on SIFT feature points. For this algorithm e�cient implementations are available. Because

the focus lies on precise relative orientation parameters, a subsequent iterative estimation in a

Gauss-Helmert model [Förstner et al., 2004] is performed. It is shown in Section 4.2.1, that the

basin of convergence of this iterative estimation is large and does not necessarily require a globally

optimal essential matrix.

3.2. Sequential and hierarchical image orientation

In this section, related work for two important strategies for the computation of image orientation

parameters is reviewed: sequential and hierarchical image orientation. Sequential image orientation

starts with a subset of images and sequentially adds further images, typically using alternating spatial

intersection and resection until all images are oriented. These methods usually apply intermediate

bundle adjustments to reduce a drift of the solution. Hierarchical models process several small sets

of images and compute the orientation in a respective local coordinate system. Afterwards, these

local reconstructions are merged so that all images are oriented in a single coordinate system. In
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particular the sequential orientation model can be seen as the common practice in photogrammetry,

outlined in the respective textbooks (e.g. Kraus [1997], pp. 48, Hartley & Zisserman [2003], pp. 435

or Pollefeys [2007], pp. 393). In the last twenty years, various models have been presented that are

based on these two di�erent procedures. In the following, the most important works are presented.

3.2.1. Sequential image orientation

Pollefeys et al. [2004] describe a sequential model for the orientation of a hand-held camera using

self-calibration. They identify an initial pair of images based on the number of correspondences and

an image-based distance that avoids images that are captured too close together and compute the

two-view geometry in the uncalibrated case. Further images are added based on projective resection

and intersection. The solution subsequently is computed in a Euclidean coordinate system using

self-calibration in order to determine the focal length in a �nal bundle adjustment. The automatic

orientation of uncalibrated image sequences in general does not allow highly accurate solutions

[Remondino & El-Hakim, 2006]. An automatic model for image orientation using calibrated images

is presented in Läbe & Förstner [2006]. Their model sequentially adds images to an initial pair

based on their pairwise relative orientation, hence without explicit computation of 3D coordinates

of homologous points. These orientations are checked for correctness both beforehand, based on a

concatenation of rotations and the coplanarity of base vectors in every triplet combination of three

respective pairwise orientations, and during integration using linear epipolar constraints.

More recently, related work concentrated on the orientation of very large sets of images, for

example from image-hosting websites, taken with many di�erent types of cameras, mostly for the

purpose of 3D visualization [Snavely et al., 2008; Agarwal et al., 2009; Wu, 2013]. Snavely et al.

[2008] construct a view-graph of images and pairwise relative orientations and tracks of observations

over the respective edges. As in Pollefeys et al. [2004], the initial pair is found based on the number

of correspondences but subject to the constraint that there is no single homography that describes

these matches, in order to avoid singularities. Moreover, they only use calibrated images. Images

are added sequentially via spatial intersection and direct linear transform (DLT) [Marzan & Karara,

1975], in an order based on the number of observations corresponding to already estimated 3D points.

After every extension of the set of images and object points, all recently added unknown parameters

are re�ned in a bundle adjustment. Agarwal et al. [2009] extend the image orientation model of

Snavely et al. [2008] to deal with even larger sets of images. The sequential orientation is performed

only on a skeleton graph, a subgraph considering only those images that signi�cantly contribute to

an extension of the reconstruction. Remaining images are then included subsequently. The method

of these papers is implemented in the open source software Bundler1. Another open source software

called VisualSFM 2 is outlined in Wu [2013]. The main concern of this work is to derive a O(n)
formulation of the image orientation problem. In order to reduce a drift of the solution, after some

1This software can be downloaded at http://www.cs.cornell.edu/~snavely/bundler/.
2This software can be downloaded at http://ccwu.me/vsfm/.

http://www.cs.cornell.edu/~snavely/bundler/
http://ccwu.me/vsfm/
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sequences a re-estimation of the 3D coordinates of points is proposed, which were discarded initially

because of inaccurate relative orientations. This is similar to a loop closure without an explicit loop

detection.

In contrast to large and unordered image datasets, the model proposed in Pierrot-Deseilligny &

Clery [2011] has a di�erent goal. The authors present an orientation software, Apero3, that aims at

a precise photogrammetric reconstruction while pursuing a complete automation of the work�ow.

They allow various camera models such as �sheye lenses with more complex distortion models than

the aforementioned approaches. The orientation procedure includes a combination of the essential

matrix, spatial intersection and resection and intermediate bundle adjustment.

3.2.2. Hierarchical image orientation

Parallel to sequential models, hierarchical image orientation approaches emerged. Fitzgibbon &

Zisserman [1998] proposed a hierarchical model based on image triplets. After an estimation of

the trifocal tensor and the spatial intersection of image correspondences, overlapping triplets are

merged via a best �t homography either minimizing a cost function regarding the distance of 3D

points (which necessitates a Euclidean normalization) or the reprojection error in image space.

Either one-image or two-images overlapping triplets can be applied. The one-image overlap requires

correspondences tracked over at least �ve images but leads to superior e�ciency. The two-images

overlap does not necessarily require any intersected 3D points and has the advantage that erroneous

matches can be detected. A generalization to this work is presented in Nistér [2000]. Before triplets

are merged, they are organized in a binary tree, with the root covering the whole sequence and for

every child the sequence is cut in half (i.e. each of the leaves spans over three subsequent images

of the sequence). A threshold for the number of correspondences controls the maximum range of

triplets, trying to �nd the best compromise between base length and number of homologous points.

When the optimal set of triplets is found, the triplets are merged and intermediate images are added.

This approach depends on prior knowledge about the image location, e.g. implicitly given by an

ordered image sequence.

The approach of Havlena et al. [2009] is also applicable to unordered images. It avoids an ex-

haustive matching of image pairs and instead computes a similarity matrix using SURF features

[Bay et al., 2008], which primarily a�ects e�ciency. From this, the best pairwise match is selected

sequentially and three possible image triplets are constructed from each pair that are then scored

based on the quality of a local reconstruction. The quality is assessed using the intersection angles

of the projection rays at the 3D points. The resulting triplets are merged and remaining images are

oriented afterwards using 3D-2D correspondences.

Gherardi et al. [2010] present a hierarchical orientation model using pairs of images, which are

organized in a binary cluster tree. Starting at the leaves, single branches are oriented in a fashion

similar to sequential image orientation forming clusters of images that are merged when two branches
3This software can be downloaded at http://logiciels.ign.fr/?Micmac.

http://logiciels.ign.fr/?Micmac
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meet. With an additional balancing of the tree, the e�ciency of the model is improved by one order

of magnitude which is shown in a comparison to Bundler.

Ni & Dellaert [2012] formulate the image orientation problem as a bipartite visibility graph with

object points and images being vertices, connected by an edge if an observation of the point exists in

the respective image. This graph is converted to a hypergraph, in which a hyperedge, representing

a 3D point, connects all those vertices, i.e. images, in which the respective point is observed. The

hypergraph is partitioned where only a small number of hyperedges connecting subsets of images

exists. When the hypergraph is partitioned, the subsets of images are oriented starting with the

smallest subsets of images. Then these subsets are aligned using the points corresponding to the

separating hyperedges.

Another hierarchical method for the orientation of large datasets is presented in Mayer [2014].

Starting from image triplets, the hierarchical merging is performed with a �xed overlap of two images,

i.e. two triplets are merged to a quadruplet and so on. The focus of this work lies on e�ciency

improvement, evaluating di�erent strategies for the reduction of points used for the hierarchical

merging. According to his �ndings, only a random deletion of points leads to reliable and precise

results.

Synthesis - sequential and hierarchical image orientation

Various models for the sequential and hierarchical estimation of image orientation parameters ex-

ist that often work well on various kinds of datasets. Considering the general strategy of these

approaches, the solution su�ers from the distribution and accumulation of errors. In sequential

approaches, with every added image, the drift of the solution increases, which can only be counter-

acted by a regular intermediate bundle adjustment, which leads to serious problems regarding the

e�ciency for large image sets. Moreover, the result regarding both, sequential and hierarchical meth-

ods, depends on heuristic decisions like the selection of an initial pair of images (e.g. [Thormählen

et al., 2004]) and the order of adding images or merging subsequences.

3.3. Global image orientation

In the previous section, sequential and hierarchical approaches for the computation of initial orien-

tations were presented. In this section, the focus is on global image orientation models. Instead of

incrementally enlarging the set of parameters, as in the sequential and hierarchical approaches, these

models follow the precept of simplifying the estimation by a division into subproblems for di�erent

types of parameters. Thus, in general, rotations and translations are estimated separately based on

pairwise relative orientations. The term global in this context means that the entire set of relative

information is taken into account at once. This leads to the conceptual advantage that errors are

not accumulated but distributed more equally over all orientation parameters. In particular, loops
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in the image sequence are implicitly taken care of, because all redundant relative orientations are

used simultaneously.

Although the evolution of global image orientation models dates back to the work of Govindu

[2001], it has not yet reached the state of a commonly used approach, for instance in available

photogrammetric software packages. However, it recently gained increasing interest in the computer

vision community. The concept of the view-graph introduced in Levi & Werman [2003] is often

used in this context. In the view-graph, images or global orientations of images are represented

as vertices and two vertices are connected by an edge if a relative orientation has been established

between the two images. This concept is also applied in the robotics community (see e.g. Olson

[2009]). Although often only two dimensional orientations are considered, the principle is similar.

In Olson [2009] a graphical model is applied to �nd a cluster of consistent edges using a weighted

adjacency matrix and a binary indicator vector. To derive an e�cient solution, the problem is

relaxed allowing a continuous valued binary vector and discretized later on.

In the following, the focus lies on three dimensional orientations. Important contributions in

the �eld of global image orientation are presented, divided into the estimation of rotations and

translations.

3.3.1. Estimation of rotations

In almost all global image orientation approaches, rotation parameters are estimated �rst. This is

basically due to two major reasons. First, a relative rotation can be estimated precisely, irrespective

of the base-to-distance ratio that a�ects the estimation of relative translations [Enqvist et al., 2011b].

Second, having a set of global rotations the estimation of global translations can be formulated as

a convex optimization problem.

The idea of estimating global rotations from a redundant set of pairwise relative rotations can be

traced back to the fundamental work of Govindu [2001]. Rotations, represented as quaternions, are

estimated in an unconstrained linear least-squares optimization. The simpli�ed problem formulation

lacks a treatment of the ambiguous nature of quaternions, neither the sign ambiguity nor the norm is

taken into account (cf. Section 2.1.3). A few years later, Govindu proposed an extension [Govindu,

2004], which uses the results of Govindu [2001] as initialization for an iterative re�nement in the

Lie algebra of SE(3) (the special Euclidean group of dimension 3). This formulation allows the

estimation of an intrinsic average that minimizes a cost function de�ned on the motion manifold.

Primary results of this work show that, while the accuracy is approximately three times worse than

after bundle adjustment, the computation is signi�cantly more e�cient. A further extension to the

model proposed in Govindu [2004] is presented in Govindu [2006], which incorporates robustness to

the estimation of orientations. Here, the problem is formulated as an over-determined view-graph

estimation, for which a minimum solution exists with an arbitrary minimum spanning tree (MST). In

the manner of a RANSAC algorithm, random MST are chosen and the solution with the maximum

number of inliers, i.e. edges that are consistent with the solution of the respective MST, is selected.
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Experiments are conducted only on one dataset, for which the approach was performed in a sliding

window, so without considering the whole view-graph, which implies a limitation concerning the size

of the view-graph. Almost half of the relative orientations were considered outliers.

Estimation using rotation matrices

Martinec & Pajdla [2007] present an unconstrained linear least-squares estimation using rotation

matrices. The homogeneous system of linear equations is solved using eigenvalue decomposition

and the orthonormality constraint is enforced afterwards with a mapping to the closest orthonormal

matrix with respect to the Frobenius norm. The authors also describe a solution using quaternions

in an unconstrained linear optimization similar to Govindu [2001] and reveal that it should not be

applied in practice because the di�erence of the estimated values to the manifold of valid quaternions

is too large. Due to the unconstrained optimization, these discrepancies also occur using rotation

matrices but are generally smaller. Arie-Nachimson et al. [2012] present a similar solution by spectral

decomposition which performs better than the method of Martinec & Pajdla [2007], in particular

for larger outlier rates. Their model also allows the formulation of a SDP for which the problem is

cast into a trace maximization for a product of symmetric matrices composed of relative and global

rotation matrices. The optimal matrix is required to be positive semide�nite and to have 3×3 identity
matrices on its main diagonal in order to derive global rotations via factorization. Additional linear

constraints are introduced which are equivalent to nonlinear determinant constraints to make the

relaxation tighter. Accuracy and e�ciency are evaluated on various datasets and show comparable

and partly better results than state-of-the-art sequential approaches of that time. Recently, Horowitz

et al. [2014] and Saunderson et al. [2014, 2015] demonstrated how the convex estimation in a SDP

can be further improved by requiring the global rotation to lie in the convex hull of SO(3). They

describe the convex hull as a linear matrix inequality constraint. This linear matrix inequality

describes a spectrahedron, a natural generalization of a polyhedron and a convex shape expressed as

the intersection of the convex cone of positive semide�nite matrices with an a�ne subspace. They

show that this constraint leads to exact rotation matrices more often than the orthogonal constraints

of Arie-Nachimson et al. [2012] does, because the feasible solution space is tighter.

Graph based detection of outliers in the relative rotations

Zach et al. [2010] use a Bayesian framework on the view-graph to detect outliers in the relative

orientations. For all cycles in the view-graph, conditional probabilities for existence or absence of an

outlier are derived based on their deviation to the identity. Using loopy belief propagation, inference

is spread to the Bayesian network. The binary constraint for edges (outlier or inlier) is relaxed to

a real-valued constraint to derive a convex optimization problem. In practice, only a subset of all

cycles is considered due to tractability, which requires a careful selection based on a sequence of

spanning trees. Because noise in the relative orientations is not explicitly modeled with respect to

the cycle length, the maximum length of a cycle is limited to six edges. Enqvist et al. [2011b] show
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examples where this restriction is not su�cient, for instance in long loopy sequences where erroneous

edges between far away images exist. They propose a similar approach using a most reliable MST,

weighted by the number of correspondences. Sequentially, remaining edges are added and for each

edge the occurring cycle is checked for consistency. Additional search heuristics cope with the case,

in which the initial MST contains outliers. The estimation of global rotations is performed with the

method described in Govindu [2001] using initial rotations of the sequential graph consistency check

to resolve the sign-ambiguity problem of quaternions. They compare their model to Bundler and

show several examples in which Bundler only achieves degenerate solutions. The problem of taking

an outlier containing initial MST is covered in Arrigoni et al. [2014b]. They propose an extension

to Enqvist et al. [2011b] using cycle bases in the vector space formed by cycles in the graph. Cycles

are classi�ed into inliers and outliers and outlier edges in the respective cycle are identi�ed via

summation. This has a positive e�ect on the false negative rate, especially for weakly connected

image sets.

Estimation with robust cost functions

Instead of �nding outliers before the actual estimation of global rotations, Crandall et al. [2011] use a

truncated cost function, combining a pairwise constraint between two cameras or camera and object

point and a cost function depending on prior information such as geotags. The view-graph, extended

by vertices for object points and edges from images to points if an observation exists, is viewed as

a Markov Random Field (MRF). Using discrete Belief Propagation, initial rotations are estimated

and re�ned in a non-linear optimization. In order to ease the computation, rotations are assumed

to be not tilted, which sometimes is a reasonable constraint considering practical applications.

Hartley et al. [2011] and Hartley et al. [2013] achieve robustness within the estimation using a L1

cost function. They apply the Weiszfeld algorithm ([Weiszfeld, 1937] (in French) or [Weiszfeld &

Plastria, 2009]) in the Lie algebra so(3) to �nd the geodesic median of a set of rotations. While this

approach �nds its primary application in the estimation of one rotation from several estimates, the

authors also describe a sequential approach on the view-graph, in which one rotation is estimated at

a time. The information is spread in the manner of a distributed consensus. Besides, Hartley et al.

[2013] give a comprehensive overview of di�erent metrics and representations as well as the convexity

of manifolds, in particular SO(3). Chatterjee & Govindu [2013] note that with increasing size of

the graph, this method scales poorly and occasionally requires many iterations until convergence.

They present a robust two-step model in which, �rstly, a L1 solution in so(3) is computed and,

secondly, re�ned in an iterative reweighted least-squares rotation averaging, similar to the approach

in Govindu [2004]. The weighting of individual relative rotations is based on the residuals, i.e. the

�tting error to the estimated global rotations. The approach is compared to the method of Hartley

et al. [2011] and next to better convergence it also shows comparable and partly higher accuracy on

two di�erent datasets.
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Arrigoni et al. [2014a, 2015b] solve the problem of Martinec & Pajdla [2007] and Arie-Nachimson

et al. [2012] as a matrix completion and decomposition (e.g. [Candès & Tao, 2010]). The cost

function is extended by two sparse matrices covering an outlier term and a matrix for missing data,

which are then treated separately.

Synthesis - global rotation estimation

There are various approaches to estimate global rotations from a set of relative rotations, all of which

have certain advantages and disadvantages. Unconstrained estimation, in general, does not provide

an intrinsic estimation, i.e. the solution has to be mapped to the rotation manifold afterwards.

Graph based outlier detection often has problems with large view-graphs whereas an estimation

with a robust cost function still su�ers from the presence of outliers, although to a smaller extent.

Finally, intrinsic methods like Govindu [2004] require initialization of the unknowns and deliver only

a local solution. Chatterjee & Govindu [2013] can be seen as a current state-of-the-art method for a

robust, accurate and e�cient computation of global rotations, which is why this method is used in

several recent publications on global image orientation [Wilson & Snavely, 2014; Ozyesil & Singer,

2015; Cui et al., 2015].

The method presented in this work relies on an elimination of outliers before the estimation

based on a new and e�ective graph-based algorithm. Rotations are then computed in a combined

estimation, �rst, solving a convex SDP as proposed by Saunderson et al. [2014] and second, in an

iterative averaging in the Lie algebra, similar to Govindu [2004]. The SDP provides accurate initial

values for the Lie algebraic averaging, which allows a fast convergence and a high probability for a

globally optimal solution.

3.3.2. Estimation of translations

Using the estimated global rotations and the relative translation directions, global translations are

estimated. Related work on this topic can be roughly divided into two categories: First, translations

and object points are estimated jointly, often in a quasiconvex L∞ optimization. The second category

comprises approaches, in which translations and structure are treated separately.

Quasiconvex L∞ estimation

The �rst work that studies the characteristic of the L∞ cost function in the scope of geometric

reconstruction is Hartley & Scha�alitzky [2004]. The authors show that the L2 reprojection error

of one point moving in front of a camera has only one global minimum but is not convex (i.e.

quasiconvex, which includes negative curvature). Considering the problem of spatial intersection,

the L2 optimal solution involves a summation of individual quasiconvex functions (one for each

image), which is not necessarily convex. The maximum operator preserves quasiconvexity, thus the
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L∞ cost function, which describes the maximum residual, leads to a quasiconvex problem. The

optimization is extended to be applied to the estimation of 3D points and global translations of

multiple cameras using the convex cheirality constraint, which guarantees that all points lie in front

of all cameras. Kahl [2005] extends this work in several ways. Firstly, he describes additional

problems for which the approach can be applied and, secondly, he introduces the formulation as a

second order cone program (SOCP), a common class of convex optimization programs. Moreover,

the work also comprises an evaluation on real datasets, which reveals that the L∞ solution is well

suited for the initialization of a nonlinear bundle adjustment. A signi�cant problem of the L∞

optimization is its sensitivity to outliers. Sim & Hartley [2006] tackle this problem and present

a heuristic method that tries to achieve robustness by iteratively solving the L∞ problem and,

after each iteration, eliminating the observations with maximal residual. They prove that the set

of observations with maximal residual, the so called support set, in quasiconvex optimization, in

particular given a SOCP, always contains at least one outlier. When a satisfactory solution is found,

the iteration is stopped. For large problems with many second order cone constraints, this approach

leads to a considerable amount of computation time. In order to cope with outliers, Ke & Kanade

[2007] minimize the mth smallest residual, which can be compared with a least-median method.

However, this formulation lacks quasiconvexity and �nding the global optimal solution requires to

solve a set of individual programs which is costly for large scale problems.

The approach of Martinec & Pajdla [2007] aims to improve both, the sensitivity to outliers and

the ine�ciency. Initially, they discard most likely mismatches, which are assumed to lie apart from

clusters in image space. A prede�ned amount of correspondences is discarded based on the distance

to a Gaussian �tted to all points in the image. From the remaining points, four of those that

are farthest from the Gaussian are selected to serve for translation and structure estimation using

the method of Kahl [2005]. This considerable reduction of data has a signi�cant positive e�ect on

e�ciency and it also reduces redundancy and, thus, reliability.

Translation estimation based on pairwise constraints

Next to rotation parameters, Govindu [2001] also describes a linear framework for the estimation

of global translations from pairwise translation directions. In an unweighted design, this approach

leads to unstable results, because error terms depend on the distance between images. In order

to improve the solution, Govindu presents an iterative estimation that performs an adjustment

of weights with the goal of a uniform weighting of individual constraints. On the one hand, the

method does not handle gross errors and, therefore, is very sensitive to outliers in the pairwise

relative translations. On the other hand, an algebraic error is minimized, which is known to be

sub-optimal regarding the geometric characteristic of translations. As mentioned above, Govindu

[2004] studies a joint estimation of rotations and translations as manifold-averaging in the Lie group

SE(3). This local method is e�cient in �nding the intrinsic average but is dependent on good

initialization. In Crandall et al. [2011], translations are estimated using the MRF and discrete belief
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propagation, already described for the case of rotation estimation (cf. Section 3.3.1), again using a

truncated cost function, which allows the introduction of prior information from geotags. Sinha et al.

[2010] formulate linear constraints from pairwise point reconstruction, assuming global rotations to

be known. They align two individual pairwise reconstructions in an image triplet, which means they

estimate the remaining four parameters, i.e. scale and translation, using sample consensus [Torr &

Zisserman, 2000]. From these tripletwise parameters, relative scales and translations are estimated

for a set of image pairs in an over-determined system of linear equations covering all images that are

to be oriented. It has been shown in subsequent works (e.g. [Arie-Nachimson et al., 2012; Ozyesil

et al., 2015]) that this method does not produce very accurate results. Arie-Nachimson et al. [2012]

propose a spectral linear method based on a novel decomposition of the essential matrix, depending

on global rotations and translations. Assuming rotations to be known, translations are recovered via

eigenvalue decomposition. Like the model in Govindu [2001], this pairwise method degenerates for

images in a collinear arrangement. In Ozyesil & Singer [2015] it is shown that the estimation of global

translations is only well posed for a parallel rigid set of relative translations (for more information

about parallel rigidity see e.g. [Servatius & Whiteley, 1999]). Thus, locations are estimated for the

maximum parallel rigid set of images using a convex L1 optimization, similar to the cost function

in Moulon et al. [2013] (cf. next subsection). Although the method is robust against outliers, it is

shown in Cui & Tan [2015] that the approach like the work of Arie-Nachimson et al. [2012] produces

degenerate solutions for collinear images.

Translation estimation based on triplet wise constraints

To cover this degeneracy, Jiang et al. [2013] present a linear model based on triplet constraints.

Geometrically, these constraints can be described as a triangulation of the location of a third image

from two overlapping images and their respective relative translation directions. Robustness against

outliers in the relative translations is derived by several veri�cation steps on the view-graph, includ-

ing a comparison of relative translation directions before and after registration. Experiments reveal

a more accurate estimation of locations of collinear images than in Arie-Nachimson et al. [2012]

and precise results for the benchmark dataset presented in Strecha et al. [2008]. In Moulon et al.

[2013], relative translation directions are derived from triplets of images. Then they formulate a

linear optimization problem using the L∞ norm including a linear cheirality constraint. The objec-

tive function describes the geometric distance of translations in object space. Results show a high

accuracy regarding the benchmark datasets and a low run time for this approach.

Cui et al. [2015] present a linear method that uses point tracks over at least three images to build

a system of constraints for the scale of the relative translations. The idea is that a pairwise locally

reconstructed point must be equivalent in all possible combinations of image pairs in which the

point is observed. Using a set of point tracks that covers the whole set of images, linear constraints

are formulated and solved using L1 optimization, which is shown to be more robust to outliers in

the point observations. The model is robust against a collinear arrangement and weakly associated
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images and produces very accurate results.

Translation estimation based on n images

In Cui & Tan [2015], a model is presented, in which to every vertex in the view-graph, all adjacent

vertices are used to compute a sparse depth image. Then, for each vertex, these depth images are

merged in order to compute individual scales for each relative translation. Translation parameters

for all the images are estimated in a linear L1 optimization. Experiments show good results in terms

of accuracy and run time.

Outlier detection using relative translations

Wilson & Snavely [2014] present a method for global translation estimation, in particular for large

and unordered image sets. They perform an outlier search, similar in spirit to Zach et al. [2010],

but using translations only. The three dimensional relative translation directions are projected to a

random set of one-dimensional directions and the consistency problem reduces to ful�lling ordering

constraints (called minimum feedback arc set in graph theory). Using heuristics, the originally

NP-hard problem is approximated. Global translations are estimated in a non-linear least-squares

optimization that, even with random initialization, achieves good results on large image sets from

image-hosting websites4. It is shown in Cui et al. [2015] that this approach performs poorly on

weakly associated images as well as in sequential image arrangements.

Synthesis - global translation estimation

Except for Govindu [2004], all presented approaches assume global rotations to be estimated be-

forehand, which allows various convex formulations of the translation estimation. Quasiconvex L∞

estimation su�ers from ine�ciency, especially for large problems, and its sensitivity to outliers.

The estimation based on pairwise constraints, while often having problems with certain acquisi-

tion geometries such as collinear images, are more e�cient. More robust methods based on image

triplets generally have advantages considering robustness against outliers in relative translations and

collinear image arrangement.

The approach proposed in this work is based on the method of Cui et al. [2015], because it achieves

very accurate results. In contrast to Cui et al. [2015], who perform a L1 optimization, robustness is

achieved by a new outlier elimination based on pairwise spatial intersection and a triplet wise scale

constraint. The distinction between inliers and outliers is very discriminative so that the method

is robust against outliers. Moreover, points are selected additionally based on their distribution in

image space, which in theory leads to more stable results.

4These data is also provided by the authors at http://www.cs.cornell.edu/projects/1dsfm/.

http://www.cs.cornell.edu/projects/1dsfm/
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3.4. Alternative approaches

Besides bundle adjustment, there are few works that comprise di�erent strategies. Fusiello & Crosilla

[2015] present an approach that solves orientation parameters via generalized anisotropic Procrustes

analysis. This method does not depend on initialization of the unknowns but merely builds on alter-

nately estimating image orientation parameters and scales for the intersection rays. The geometric

cost function describes the distance of intersecting rays in object space. While achieving similar

accuracy to bundle adjustment, the convergence of this approach tends to be quite slow.
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orientation

This chapter is devoted to a detailed explanation of the method newly developed for global image

orientation. After a brief introduction into global image orientation and a comparison of the ob-

jective of this thesis with the state-of-the-art (4.1) the model is presented in three main parts: the

estimation of relative orientations from homologous points (4.2), a combined convex estimation of

global rotations (4.3) and the estimation of global translations based on local spatial intersections

(4.4).

In the �rst part, an accurate and robust method to estimate relative orientations from homologous

points is discussed. After the presentation of a constrained M-estimation (4.2.1), the focus lies on the

robustness of the relative orientations regarding the contextual information from connected images.

The image orientation problem is viewed as a graphical structure, for which certain constraints can

be established that allow the detection of gross errors (4.2.2).

The second part comprises the estimation of global rotations and is divided into two subsequent

optimizations. Firstly, the optimization is relaxed to �nd a SDP-formulation that allows to solve the

problem in the convex hull of SO(3) (4.3.1). Secondly, the solution serves as an accurate initialization

for a subsequent iterative estimation in the Lie algebra so(3) (4.3.2).

The third part is dedicated to the estimation of global translations with known rotations. Using

rotated relative translations, linear homogeneous constraints are formulated based on local point

reconstructions (4.4.1). This step requires a selection of suitable point tracks (4.4.2) and a detection

of outliers in the image coordinates of the homologous points, for which a novel combination of the

reprojection error and a triplet-scale constraint is introduced (4.4.3). Thereafter, a solving strategy

is discussed (4.4.4).

The last section comprises information about the �nal robust bundle adjustment (4.5).

A detailed schematic illustration of the work�ow is depicted in Figure 4.1. The four main parts

(Sections 4.2-4.5) are highlighted by the gray areas. The three columns correspond to pointwise

information (left), relative orientations (center) and global orientations (right).
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image coordinates of
homologous points pij

essential matrix estimation

M-estimation of relative
orientation (4.2.1)

graph breadth-propagation
(4.2.2)

semide�nite rotation
estimation (4.3.1)

Lie algebraic rotation
averaging (4.3.2)re�ne relative translations

generate point tracks
(4.4.2)

translation estimation
(4.4.4)

relative orientation
parameters {t0ij ,R0

ij}

re�ned relative orientation
{t?ij ,R?

ij}

initial global rotations R?

global rotations R??re�ned relative
translations t̃?ij

point tracks global translations T ??

robust bundle adjustment
(4.5)

generate constraints
(4.4.1) and (4.4.3)

constraints

global orientation
parameters {RBA, T BA}

Figure 4.1.: Schematic illustration of the work�ow. Blue boxes represent the individual steps of
the method, yellow boxes the respective resulting parameters. Gray zones highlight the
individual parts.
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(a)

(b) (c)

Figure 4.2.: Reconstruction of a park scene (4.2a) using the global image orientation proposed in
this work (4.2b) and an incomplete reconstruction of the same scene using VisualSFM

[Wu, 2013] (4.2c).

4.1. Global image orientation and objective revisited

This section gives a brief introduction to the proposed global image orientation approach and com-

pares the objective of this thesis with available approaches from the state-of-the-art. The most

characteristic feature of global image orientation methods is that they use all relative information

that is available at once. This requires an extensive matching of images which is time consuming if

no prior information regarding image position and rotation and thus possible overlap is available.

The availability of this kind of information strongly depends on the type of images that shall be

oriented. Images from aerial photogrammetry, for instance, come with quite accurate position and

rotation information from di�erential GNSS and IMU and are taken in a regular pattern such that

the overlapping regions are basically known in advance. Terrestrial moving platforms often use time

stamps that lead to the assumption that consecutive images picture a similar scene. The inverse

assumption does not hold because images, despite lying far apart on the time scale, may of course

capture the same object. This is known as the loop-closure problem (e.g. [Meidow, 2012]). Images

from terrestrial photogrammetry or from unordered datasets from image-hosting websites (e.g. [Wil-

son & Snavely, 2014]) often do not contain prior information of any kind. Whereas images taken for

a photogrammetric purpose in general aim for precise measurements and therefore exhibit a suitable

geometric setup regarding overlap and coverage of the object, images from hosting websites often

have none of these characteristics but a high redundancy in terms of acquisitions from almost the

same view point.

Sequential and hierarchical approaches (e.g. [Havlena et al., 2009; Wu, 2013]) in general only use a
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subset of the relative information available and depend on computationally demanding intermediate

bundle adjustment. This limitation might lead to poor reconstruction results as is exemplarily

depicted in Figure 4.2. In this example a set of collinear images was acquired and oriented using

the method proposed in this work (4.2b) and the free software VisualSFM [Wu, 2013] (4.2c). The

reason why VisualSFM was not able to compute the correct orientation cannot be determined with

certainty.

In general, this degeneracy is more likely to happen for image sets whose acquisition was not

planned for photogrammetric reconstruction. Nevertheless, in terms of error propagation, a joint

estimation of all unknowns is always favorable because errors are distributed more equally.

In Section 1.1, one major objective of this thesis is presented: The proposed method shall allow the

estimation of accurate image orientation parameters (1), it shall provide robustness against outliers

in the relative orientations and image coordinates of homologous points (2) and it shall be applicable

to a variety of di�erent data, as mentioned in the previous paragraph (3). Before this method is

studied in the following sections, its main directions are compared with the state-of-the-art.

A high accuracy is a feature desired by probably all image orientation methods, though perhaps

not the main focus. Many approaches are merely driven by a reduction of computation time (e.g.

[Govindu, 2004; Chatterjee & Govindu, 2013; Jiang et al., 2013]), which is not the main purpose

of this work. A simple but e�ective method to enhance the accuracy is to improve relative ori-

entations by a subsequent nonlinear M-estimation in a Gauss-Helmert-model (cf. Section 4.2.1).

This additional step was not explicitly conducted before in the context of global image orientation.

The detection and elimination of erroneous relative orientations in the proposed method is carried

out within a new graph-based breadth-propagation algorithm (cf. Section 4.2.2), similar in spirit

to the approaches in Zach et al. [2010] and Enqvist et al. [2011b] but without any limitations, e.g.

regarding the length of cycles. Another advantage in comparison to methods based on robust cost

functions like Hartley et al. [2011]; Chatterjee & Govindu [2013] is that outliers are eliminated and

do not distort the result in any way.

The estimation of global rotations is based on the method of Govindu [2004] (cf. Section 4.3.2).

It is e�cient, uses the Lie group structure of rotations and, thus, sticks to a solution space on the

rotation manifold and provides a maximum likelihood solution in the Lie algebra. Its dependency

on initial rotations is covered by the estimation of initial rotations based on the SDP presented

in Saunderson et al. [2014] (cf. Section 4.3.1). The estimation is augmented by prior knowledge

in form of weights deduced from the variances, which are available thanks to the M-estimation.

This often leads to more accurate results. Although such a con�dence weighting is mentioned in

some related works, it is always based on the number of correspondences, which is not necessarily a

reliable indicator for the actual quality of the relative orientation. For instance, the distribution of

homologous points in image space is not taken into account.

Translation estimation is based on Cui et al. [2015] (cf. Section 4.4). This method has advantages

regarding collinear camera arrangements and weakly associated images and therefore is suitable
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for various types of data. However, in Cui et al. [2015], outliers in the image coordinates of the

homologous points are detected by a robust L1 estimation, which does not lead to an unbiased

maximum likelihood solution. In the proposed method, robustness is achieved by introducing further

constraints (cf. Section 4.4.3), so that outliers are eliminated before the estimation allowing a

statistically more favorable L2 estimation (cf. Section 4.4.4). Moreover, a novel strategy of selecting

suitable points for the construction of constraints is used, which takes a favorable distribution in

image space into account (cf. Section 4.4.2).

4.2. Preprocessing

In this section, the �rst part of the method is described, which is dedicated to provide a set of

accurate relative orientations. For a set of n images I = {I1, . . . In} it is assumed that image

coordinates of homologous points pij ,∀(i, j) ∈ {1, . . . , n}, i < j have been found in case two images

{Ii, Ij} overlap. Every pij consists of a set of point tuples
(
pl
i,p

l
j

)
, in which each tuple encompasses

the observations in images Ii and Ij that are likely to represent the same point Pl in object space,

whereas likely in this context refers to the metric of the SIFT descriptor [Lowe, 2004]. In practical

applications, these points contain a considerable amount of outliers. For this set of n images, there

exist at most (n (n− 1)) /2 possible pairwise combinations ij. For each of these combinations, a

relative orientation is computed if the number of homologous points in pij is larger than a given

threshold, i.e. |pij | > τ|p|. The number of relative orientations is denoted by m. Initial values

for these m relative orientations {t0ij ,R0
ij} are computed based on the essential matrix, which is

estimated using the 5-point algorithm [Nistér, 2004] in a random sampling approach [Torr & ,

2002], using a subsequent factorization [Hartley & Zisserman, 2003], pp. 239. This step will not

be discussed in the remainder of this work. Most of the outliers in the homologous points are

detected and excluded as shown exemplarily in Figure 4.3. However, the heuristic nature of such a

random sampling approach is that the solution is not necessarily optimal and will vary if computed

repeatedly. The optimal solution for the relative orientation is derived by a subsequent nonlinear

maximum likelihood M-estimation (see e.g. [Huber et al., 1964; Hampel, 1968], or [Förstner et al.,

2004], pp. 812), which is brie�y studied in Section 4.2.1. Thereafter, a novel graph based approach

to enhance the reliability of the relative orientations is presented in Section 4.2.2. A previous version

of this approach is presented in Reich & Heipke [2016].

4.2.1. Constrained M-estimation of the relative orientation

As introduced in Section 2.1.2, the relative orientation is parameterized by the dependent-images

representation. The functional model for the estimation is derived from the pointwise nonlinear

coplanarity condition in equation (2.7), assuming normalized observations and ignoring the super-

script n·:
cl{tij ,Rij} = pl,T

j RT
ij [tij ]× pl

i
!
= 0. (4.1)
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(a) before RANSAC

(b) after RANSAC

Figure 4.3.: Homologous points before (4.3a) and after (4.3b) estimation of the initial relative orien-
tation using the 5-point algorithm and RANSAC. The red circle highlights two outliers
that have been eliminated.

This condition is solved in the sense of a Gauss-Helmert model . The partial derivatives of the

condition equations with respect to the unknowns, stored in the Jacobian J{tij ,Rij}, and to the

observations, stored in matrix B, are computed using the initial relative orientation {t0ij ,R0
ij}. For

point l they read:

J{tij ,Rij}
1×6

l =
∂cl{tij ,Rij}

∂{tij ,Rij}
=

[([
Rij p

l
j

]
×
pl
i

)T

,

([
RT

ij [tij ]× pl
i

]
×
pl
j

)T
]

(4.2)

B
1×6

l =
∂cl{tij ,Rij}

∂
(
pl
i,p

l
j

) =

[
pl,T
j RT

ij [tij ]× ,
(
RT

ij [tij ]× pl
i

)T
]
. (4.3)

The linearized functional model of the Gauss-Helmert model reads as:

Bv + J{tij ,Rij}x+ c{tij ,Rij} = 0, (4.4)

with J{tij ,Rij},B and c{tij ,Rij} representing all homologous points, constructed by stacking (4.1)-(4.3)

for each homologous tuple in pij , respectively. The vector v contains the residuals of the image co-

ordinates in image space and the parameter vector x = [tij,x, tij,y, tij,z, ωij , ϕij , κij ] contains the

unknowns, using the Euler angle representation. Note, that any other rotation representation like

quaternions can also be used. A maximum likelihood estimation of the relative orientation param-

eters is derived by minimizing the sum of the squared and weighted residuals. Thus, the following
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Figure 4.4.: Visualization of two outliers lying close to the epipolar plane. Top: inlier correspondencs
after estimation of the essential matrix. After M-estimation of the relative orientation
2 outliers were found (red). Bottom: epipolar lines for both outliers after M-estimation
of the relative orientation.

optimization problem is formulated:

minimize vTW{tij ,Rij}v (4.5)

subject to Bv + J{tij ,Rij}x+ c{tij ,Rij} = 0[
tTij , 0

1×3

]
x− 1 = 0 .

The weight matrix W{tij ,Rij} is applied for an iterative reweighting of the individual condition

equations, which leads to the constrained M-estimation. Initially, observations in image space are

considered equally accurate an uncorrelated. Then, individual weights for every point l are computed

by wl
{tij ,Rij} = σ2

0

(
BlΣpijB

l,T
)−1

using the covariance matrix of the observations Σpij . The second

constraint in (4.5) eliminates the scale from the estimation and requires the length of the relative

translation to be equal to one. Such a constrained optimization problem is generally solved using

Lagrangian multipliers (cf. Section 2.3.3).

The estimation is iterated until in iteration b the factor
‖c{tij ,Rij}‖

b−1−‖c{tij ,Rij}‖
b

‖c{tij ,Rij}‖
b−1+‖c{tij ,Rij}‖

b , which describes

the change of the condition equation (Equation (4.1)) from one iteration to the next, is below

a given threshold τc{tij ,Rij}
. Observations whose residual is higher than 3σ̂2

0, using the empirical

variance factor σ̂2
0 =

(
vTW{tij ,Rij}v

)
/
(
|pij | − 5

)
, are considered outliers and excluded from further

computations.
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Figure 4.5.: Rate of convergence to the global optimum of M-estimation for di�erent noise rates on
individual Euler angles (yellow, green, red) and jointly on all Euler angles (blue).

Especially in scenes with repetitive structure it happens that two correspondences ful�ll the epipo-

lar constraint while they do not represent the same point in object space. Sometimes, these outliers

are detected during the M-estimation because of the re�ned relative orientation. An example of such

points can be seen as red matches in Figure 4.4. Although the correspondences still lie very close to

the respective epipolar lines, the di�erences compared to the correct matches shown in yellow are

high enough to be detected as outliers.

Finally, using the set of homologous points p?
ij , from which these remaining outliers have been

deleted, an estimation with unit weights is performed to derive the improved relative orientation

{t?ij ,R?
ij}. From the inverse normal equation matrix the empirical covariance matrix of the relative

orientation is computed:

Σ{t?ij ,R?
ij} = σ̂2

0

(
JT
{tij ,Rij}

(
BTΣpijB

)−1
J{tij ,Rij}

)−1
. (4.6)

This matrix parameterizes the con�dence for each relative orientation and is used for a weighting

during the estimation of global rotations and translations.

The optimization problem outlined in this section is not convex due to the condition equation

(4.1) which is bivariate in the unknowns. The radius of convergence to reach the global optimum

depends on the number and the distribution of observations in image space. Figure 4.5 shows a

Monte-Carlo analysis for the estimation of the relative orientation, exemplarily for the image pair of

Figure 4.3, varying the initial rotations. Euler angles are drawn uniformly in the interval [−t5◦, t5◦],
0 ≤ t ≤ 18, around the true Euler angles (see noise level on the x-axis). For each t, 100 independent

trials are conducted using the modi�ed Euler angles as initialization for the M-estimation of the

relative orientation. The rate of convergence on the y-axis shows the proportion of trials, at which

the optimization converged to a globally optimal solution. Until ±45◦ variation in (ω, ϕ, κ) the

estimation always reaches the global optimum. A variation in the translation direction only has a

negligible in�uence on the convergence to the optimal relative orientation. Thus, in practice, the

initialization from a sub-optimal essential matrix is accurate enough to derive the global optimum.
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Figure 4.6.: View-graph of Herz-Jesu-P25 (see Section 5.1 for a description of the data).

4.2.2. Propagation of the view-graph

In the previous section, it was shown how the precision of the relative orientation is improved

so that they are optimal regarding pairwise correspondence constraints. In order to derive a set

of accurate relative orientations, this is not su�cient. What if, for a pair of images {Ii, Ij}, the
majority of homologous point tuples in p?

ij supports a relative orientation which is intrinsically

justi�ed considering the epipolar constraint but erroneous regarding the true underlying geometry?

This may happen if the images picture scenes with repetitive structure. Further problems are planar

scenes, for which the estimation of the relative orientation may cause problems, or an unfavorable

distribution of correspondences in the image that might lead to unstable results.

In this section, a novel graph based algorithm is presented that detects outliers in the relative

orientations using breadth-propagation. Besides outlier detection, initial values for the unknown

global rotations are also generated. Breadth-propagation is conducted using relative rotations only,

whereas the underlying graphical structure is de�ned for both, relative translation and rotation.

De�nition 1. Let G = (V, E) be an undirected graph in which a vertex Vi ∈ V represents the global

orientation of image Ii and two vertices Vi and Vj are connected by an edge Eij ∈ E if a relative

orientation between images Ii and Ij has been estimated. n is the number of vertices, n = |V|, and
m is the number of edges, m = |E|. It is |V| = n and |E| = m. This graph is called view-graph.

The concept of the view-graph is used frequently to describe the relation between relative and

global orientation parameters [Govindu, 2006; Martinec & Pajdla, 2007; Sinha et al., 2010; Arie-

Nachimson et al., 2012]. It allows an intuitive visualization of the orientation problem as depicted in

Figure 4.6. Yellow vertices depict individual images, connected by blue edges if a relative orientation

is estimated. In this example, the image corresponding to the lowest vertex has considerably less

connections because it is taken from a relatively sharp angle.

The general problem of �nding global orientation parameters can also be described in terms of
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Figure 4.7.: Example of view-graphs. MST, all vertices are connected (4.7a) and redundant graph
with a minimum cycle (4.7b).

a graphical model: determine the vertices given edges, annotated with relative orientations, and a

propagation constraint. In case of global rotations, this model is applied using the functional relation

between relative and global rotations given in Equation (2.4). Starting from an arbitrary vertex V1

with �xed rotation R1, global rotations can be propagated to adjacent vertices by Vj ← Rj =

R1R1j . Having exactly m = n−1 edges so that all n vertices are connected, the graph is a so-called

minimum spanning tree (MST) (see Figure 4.7a). In this MST all global rotations can be estimated

by successive propagation from one vertex to the next and there is only one solution. In the general

case, the number of edges m is higher than n − 1, at maximum (n (n− 1)) /2, which on the one

hand makes propagation more complicated, but on the other hand induces redundancy that can be

used to examine the correctness of the underlying graph, i.e. the relative rotations.

The redundancy in the view-graph reveals itself in terms of cycles. Propagating along a cycle until

the starting vertex is reached induces a constraint to all relative rotations in the cycle. Assuming the

smallest cycle possible, formed by the set {R12,R23,R13}, outlined in Figure 4.7b, the propagation

constraint is written as:

R1 = R1R12R23R
T
13 ⇔ R12R23R

T
13 = I3×3. (4.7)

Note that RT
13 = R31. Due to noise in the relative rotations, in practice, the condition in (4.7) is not

ful�lled in general. Deviations above the expected imprecision of the relative rotations give evidence

of the presence of an outlier in the relative rotations. From one cycle alone, only the existence

of an outlier can be identi�ed, whereas a decision, which rotation is wrong, is not possible. Zach

et al. [2010] use loopy belief propagation in a Bayesian network, Enqvist et al. [2011b] successively

add edges to a most reliable MST in order to identify erroneous edges. In the breadth-propagation

algorithm presented in this section, cycles are used implicitly: Starting from an arbitrary vertex,

rotations are propagated in the manner of a graph breadth-�rst-search [Moore, 1959; Gould, 1988].

This means that all adjacent vertices are estimated before a subsequent vertex is chosen to propagate

from. Hence, the algorithm can be divided into |V| = n sequences. In the following, a superscript

always refers to the sequence. The starting vertex of the �rst sequence, which is denoted as V1, and

the order in which the algorithm selects consecutive vertices are partly subject to heuristic decision.

Of course, only vertices, which have an estimated rotation, can be selected as the starting vertex.

It is a justi�ed assumption that the propagation of noisy relative rotations causes a drift in the
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estimation of global rotations, i.e. for every concatenation of rotation matrices, the uncertainties

are propagated as well. The selection of the �rst starting vertex V1, proposed in the following, takes

this into account.

Let d1i ∈ d1 ∈ Zn : 0 ≤ d1i ≤ n−1 denote the distance from the starting vertex V1 to the vertex Vi,

which is de�ned as the minimum number of edges between V1 and Vi. If V1 = Vi then d1i = 0 and if

G is a MST then the maximum distance max
(
d1

)
= n− 1. In general, max

(
d1

)
� n− 1. Let the

matrixD be an n×n distance matrix composed by stacking all n×1 vectors di. This matrix contains

all pairwise distances, including the zero-distance to the reference vertex itself. For example, the

view-graph of Herz-Jesu-P25 shown in Figure 4.6 has a maximum distance of 2, irrespective of the

starting vertex V1, so every vertex can be reached from every other vertex using at most two edges.

Regarding a minimum drift, the task is to �nd a vertex V1 so that max
(
d1

)
is minimal considering

all possible vertices as starting vertex:

�nd V1 (4.8)

subject to max
(
d1

)
= min (max (D)) .

In (4.8) the function max (·) applied to a matrix returns the column-wise maximum value. This

problem is solved using the adjacency matrix of the view-graph by applying the Floyd-Warshall

algorithm [Floyd, 1962; Warshall, 1962; Gould, 1988] (cf. Appendix E for a pseudo code and a toy

example).

Given the distance matrix D, there might be more than one possible solution V? for V1, i.e. more

than one column with minimal maximal distance. Out of these solutions, the vertex with maximum

degree is selected: V1 ∈ V? : |V1| = max |V?|. If still there is no unique candidate, a random

selection between the remaining vertices is made. From these algebraic distances, one might want

to extrapolate a geometric interpretation of the image arrangement. It is likely that the image

corresponding to the selected starting vertex lies approximately in the geometric barycenter of all

images but this is, however, merely speculative.

The order of the breadth-propagation is de�ned by the number of examined edges incident to a

vertex. Let s ∈ {1, 2 . . . , n} denote the current sequence of the algorithm and Ei ⊆ E be the set of

edges incident to vertex Vi. Then Esi ⊆ Ei is the set of all examined edges at sequence s incident to

Vi. From s = 2 on, remaining vertices are sorted in decreasing order in |Es−1
i | with index i covering

all vertices in V \ {V1, . . . ,Vs−1}. The starting point for a sequence s ≥ 2 is the topmost element in

this sorted list. If there is not a unique vertex Vi with maximum |Es−1
i | the number of all incident

edges |Ei| is used.

This procedure is visualized in Figure 4.8 for a small example. Sequences are numbered from

I − VIII. The numbering of the vertices re�ects the order in which each vertex is considered as

starting vertex in the subsequent sequence and is updated in every sequence based on the number

of examined incident edges. The �rst starting vertex V1 is selected according to (4.8) which can
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Figure 4.8.: Simulation of a graph breadth-propagation, starting from top left proceeding column
wise from I to VIII. Propagation from the starting vertex (green) to non-estimated
vertices (blue) and to already estimated vertices (yellow).

be easily veri�ed because it is the only vertex with max
(
d1

)
= 2. The actual starting vertex in

every sequence is depicted in green. Vertices that have not been estimated yet are pictured in blue

and vertices that have been estimated are shown in yellow; a distinction of these two cases will be

given in the following paragraph. Only the highlighted part is a�ected in the respective sequence.

After sequence I there are four candidates in V? for the starting vertex of sequence II. Then, the

number of all incident edges to vertices in V? is decisive for the selection of the starting vertex V2. In

sequences VI and VII a random selection for the starting vertex is made. After n = 8 sequences the

breadth-propagation stops. As can be seen, all vertices are yellow and all edges have been consulted

twice.

If a vertex has not been estimated, i.e. the vertex is blue, a rotation is propagated from the

starting vertex using (2.4). The case in which a vertex has been estimated before, i.e. the vertex is

yellow, is equivalent to closing a cycle in the graph. In this case, the di�erence between the estimated

rotation of vertex Vj , denoted as 1Rj , and the propagation from Vs, denoted as 2Rj = RsRs
j , is

computed using the angular distance, dα
(
1RT

j
2Rj

)
, de�ned in (2.14). Based on a threshold τα two

di�erent situations are distinguished:

1. If dα
(
1RT

j
2Rj

)
≤ τα: The two rotations are similar, it is assumed that the cycle is free from

outliers. Both rotations are averaged using single rotation averaging (cf. Appendix B)
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Vj

Vs

Vj

Vs

Vj

Vs

I II III

Figure 4.9.: Simulation of an inconsistent propagation. I: propagation from Vs to Vj that has been
estimated before. II: both rotations are inconsistent, all estimated adjacent vertices
(green) are consulted to make a propagation to Vj . III: Vj is averaged from the largest
consistent set of propagated rotations (green), inconsistent edges (dashed lines) are
considered to be classi�ed as E− (see text for more information).

2. If dα
(
1RT

j
2Rj

)
> τα: The two rotations are inconsistent, it is assumed that the cycle is af-

fected by outliers. Redundant information is consulted to identify the outlier (see the following

paragraph).

Let the set of edges E be divided into two subsets E+ and E− such that E = E+ ∪ E− and

E+ ∩ E− = ∅. E− is the set of all edges considered to be outliers and E+ are the inliers. In the

beginning, all edges in G are classi�ed as E+. If, during propagation to a vertex Vj , an inconsistency

in a cycle is discovered, i.e. the second case is reached, classi�cation of the involved edges into E−

and E+ is necessary. In order to �nd the erroneous relative rotation, the following sub-procedure,

outlined in Figure 4.9, is applied. In case of an inconsistency (step I), all estimated vertices adjacent

to Vj are consulted to make a propagation (step II). This expands the set of rotation estimates

for Vj , Rj = {1Rj ,
2Rj}, by additional |Esi | − 1 estimates that allow a division of Rj into R+

j and

R−
j with Rj = R+

j ∪ R
−
j , R

+
j ∩ R

−
j = ∅. The largest consistent subset R+

j ⊆ Rj , in which every

element iRj ∈ R+
j is similar to every other with respect to the threshold τα, is taken to compute an

average solution by single rotation averaging (step III). If there is not a unique largest subset, the

rotation is not propagated. In future work the decision making could be enhanced by introducing

prior information from the covariance matrices of the relative rotations.

Edges corresponding to R−
j , i.e. those connected to vertices from which the propagation did not

lead to a consistent solution, are considered to be classi�ed as outlier edges E−. A �nal classi�cation

requires the validation of two criteria: Firstly, |R+
j |/|R

−
j | ≥ τc must hold, thus the ratio between the

number of consistent and inconsistent rotation estimates must be above a given threshold τc. This

constraint avoids a premature classi�cation of edges, for which a reliable decision cannot be made.

τc is set to 1.5. Secondly, the respective complement vertices, corresponding to R−
j , must have

been estimated redundantly by at least two additional adjacent vertices. This is reasonable because

otherwise the complement vertex itself could be also erroneous and it could not be di�erentiated,

which of the two examined incident edges is the outlier. These criteria are best explained considering

Figure 4.9, step III. Consistent vertices are connected to Vj with a solid line, inconsistent vertices

with a dashed line. The �rst criterion is ful�lled, because |R+
j |/|R

−
j | = 1.5. Regarding the second

criterion, the starting vertex Vs, besides its connection to Vj , has two further examined incident
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edges whereas the second complement vertex to the upper right of Vj only has one. Therefore,

only the edge Es
j is classi�ed as E−. After the propagation, a �nal classi�cation is conducted by

computing the angular distance considering all edges E+ and vertices V.

For this breadth-propagation to work properly, the following requirements are imposed that have

to be ful�lled:

Lemma 1 (Redundancy). The redundancy of relative rotations with respect to global rotations is

high enough. More speci�cally, the degree of any vertex |Vi| must be at least equal to three to be able

to identify an outlier.

A vertex with degree one is estimated only once and will never be in line for a second estimation.

A vertex of degree two is estimated twice and thus the angular distance between both estimations is

computed at some point in the algorithm. However, if dα > τα a decision, which rotation is correct

and which one is incorrect cannot be taken. If the degree is larger or equal to three, the possibility

of a largest consistent subset and a rigorous classi�cation of incident edges exists. In case no such

set exists, i.e. all rotation estimates in Rj di�er, or no �nal decision is reached, the relative rotation

with smallest trace of its covariance matrix is assumed to be an inlier.

Lemma 2 (Outlier distribution). Outliers are distinguished from inliers based on the angular dis-

tance between two individual estimations {1Rj ,
2Rj} and a threshold τα. It is unlikely that a prop-

agation using two or more incident erroneous relative rotations leads to a consistent solution.

In statistics, it is common to assume a uniform distribution for outliers (see e.g. Triggs et al.

[2000]), which supports Lemma 2. The case, in which a consistent solution is derived from outliers

only, however, cannot be precluded entirely in practice. It has to be noted that no outlier detection

model can be considered immune to this issue.

The derivation of the breadth-propagation algorithm above and the two lemmata lay the ground

for the following theorem.

Theorem 1 (Convergence of the breadth-propagation). Once the breadth-propagation is �nished,

every vertex reachable from V1 has been estimated. Every edge Eij ∈ E+ has been examined at least

twice.

The proof of Theorem 1 is based on the proof of Theorem 2.1.3 in Gould [1988], p. 36.

Proof. First, the proof is given without considering noise. Suppose any vertex Vk that has an esti-

mated rotation Rk and is reachable from V1. Then, by applying the breadth-propagation explained

above, there must exist an adjacent vertex Vj with the rotation RkR
T
jk, which, in turn, is adjacent

to a vertex Vi with RkR
T
jkR

T
ij . This is continued until, eventually, the vertex V1 is reached with

RkR
T
jkR

T
ij . . .R

1,T
h = I3×3. For the noisy case the equality does not hold and has to be substituted

with
dα

(
RT

j RkR
T
jk

)
djk

< τα, (4.9)
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Figure 4.10.: Simpli�ed visualization of of the problem of estimating global rotations from relative
rotations in the two-dimensional case.

with djk being the number of edges between vertices j and k. Because every edge Eij ∈ E+ is

incident to two vertices Vi and Vj , it is examined at least twice by applying the propagation rules

de�ned above.

The breadth-propagation algorithm delivers a set of m+ inlier relative rotations corresponding to

E+ and initial global rotations R = {R1 . . .Rn : Ri ∈ SO(3)}. The classi�cation of the relative

rotations into E+ and E− is applied to relative translations as well. This follows from the correla-

tion of relative rotation and translation: a defective relative rotations that does not represent the

underlying global geometry induces a defective relative translation.

4.3. Estimation of rotations

In the previous section, the focus was on the construction of a set of consistent and precise relative

orientations using M-estimation and graph breadth-propagation. This chapter is dedicated to the

�rst of the two types of image orientation parameters: global rotations. These have already been

estimated as a byproduct of the breadth-propagation presented in Section 4.2.2. However, the

propagated rotations R depend on the order of propagation. Moreover, the redundant relative

information is used sequentially while in each sequence the majority of the global rotations is assumed

to stay �xed. In this way, the rotations are estimated in the sense of a distributed consensus [Hartley

et al., 2011, 2013] but not until convergence. Thus, the distribution of errors is not optimal.

The method presented in this chapter treats all global rotations at the same time using all relative

orientations at once, which leads to a more equal distribution of errors. This problem is visualized

in Figure 4.10, simpli�ed for the two-dimensional case: From redundant pairwise relative rotations

a set of global rotations is estimated in a joint coordinate system. The solution to this problem is

twofold: Primarily, a relaxed convex optimization is conducted that delivers a solution in the convex

hull of SO(3) (Section 4.3.1). This solution is used as initialization for a subsequent estimation in

the Lie algebra so(3), described in Section 4.3.2.
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4.3.1. Semide�nite estimation of rotations

The main purpose of the semide�nite estimation of global rotations described in this section is to

derive initial global rotations R? for a subsequent nonlinear least-squares adjustment that are not

dependent of the characteristics of breadth-propagation and represent a globally optimal solution

regarding a relatively mildly relaxed optimization problem. The approach presented in this sec-

tion is inspired by recent developments in optimization on algebraic groups [Horowitz et al., 2014;

Saunderson et al., 2014], in which the problem is solved using a constrained convex relaxation. In

the following, the nonconvex optimization is described followed by a presentation of the convex

relaxation.

A nonconvex cost function can be derived from Equation (2.4):

dRij = ‖RT
i Rj −Rij‖F , (4.10)

which corresponds to the chordal distance de�ned in Equation (2.12). This cost function is nonconvex

because of its bivariate part RT
i Rj . It constitutes the cost in R9 without any intuitive geometrical

interpretation. A least-squares solution is found by solving the following optimization problem:

minimize
{R1,...,Rn}

∑
∀(i,j)∈E+

d2Rij
(4.11)

subject to R1, . . . ,Rn ∈ SO(3) .

As already mentioned, neither the objective function nor the manifold SO(3) are convex [Hartley

et al., 2013], which makes a global estimation impossible. Even with accurate initial values for

the unknowns, the inclusion of the determinant constraint, inherent to the SO(3) manifold, is

cumbersome and therefore often dropped [Martinec & Pajdla, 2007; Arie-Nachimson et al., 2012;

Carlone et al., 2015].

In order to derive a convex optimization problem, both, the objective function and the SO(3)

constraint, have to be relaxed. For the former, a common strategy is to substitute the minuend

in (4.10) with a 3 × 3 matrix Mij . This matrix is a submatrix of the 3n × 3n symmetric matrix

M, which is constructed by a comprehensive multiplication of the global rotation matrices. Let

R = [R1,R2, · · · ,Rn] be a 3× 3n matrix composed by stacking the global rotation matrices, then

it is:

M = RTR =


I3×3 RT

1 R2 · · · RT
1 Rn

RT
2 R1 I3×3 · · · RT

2 Rn

...
...

. . .
...

RT
nR1 RT

nR2 · · · I3×3

 . (4.12)

M is a Gramian matrix and by de�nition positive semide�nite, i.e. M � 0, and rank (M) =

rank (R) = 3. Furthermore, note that the main diagonal ofM is composed of 3×3 identity matrices.
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This is meaningful regarding the multiplication pattern because, recalling the group axioms no. (iii)

and (iv) in Section 2.2 a rotation multiplied by its inverse (or transposed) gives the identity matrix.

Analogously, the subtrahend of (4.10) is substituted with M0
ij , a submatrix of M0, similar in

design to M:

M0 =


I3×3 R12 · · · R1n

RT
12 I3×3 · · · R2n

...
...

. . .
...

RT
1n RT

2n · · · I3×3

 . (4.13)

Again, the main diagonal is composed of identity matrices. The cost function (4.10) can now be

written as:

dMij = ‖Mij −M0
ij‖F , (4.14)

which is linear in the new unknown matrix Mij .

The matrix (4.13) is composed of the relative rotation matrices corresponding to E+. In general,

this matrix is not fully occupied because not every pair of images overlaps, which is the fundamental

requirement for the existence of a relative orientation. Thus, the cost function (4.14) is only deployed

for those combinations for which an element in M0 is available. Matrix M in (4.12), though, must

be fully occupied given the fact that every global rotation in R can be estimated. This problem

is directly related to matrix completion, which deals with computing a full low rank matrix from a

subset of its entries [Chen & Suter, 2004; Candès & Tao, 2010; Arrigoni et al., 2015b].

The cost function (4.14) is further simpli�ed using the trace equivalence:

dMij = ‖Mij −M0
ij‖F =

√
tr

((
Mij −M0

ij

)(
MT

ij −M0
ij
T
))

=

√
tr

(
2I− 2MijM0

ij
T
)

(4.15)

because tr
(
MijM

0
ij
T
)
= tr

(
MT

ijM
0
ij

)
.

Without loss of generality, Equation (4.15) can be squared and the constant part can be extracted

in order to derive the �nal convex cost function,

dMij = −tr
(
MijM

0
ij
T
)

. (4.16)

The maximum trace of a rotation matrix is equal to 3. In case of noise-free relative rotations, the

product in (4.16) yields the 3× 3 identity matrix and the minimum cost would be equal to −3m+.

In practice, however, this assumption does not hold but gives a lower bound on the optimal value.

Before the convex optimization problem is established, the SO(3) constraint has to be relaxed.

One way of doing this is to drop the determinant constraint and require orthogonality only, which

extends the set of feasible matrices to O(3), the set of orthogonal 3 × 3 matrices. These matrices
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Figure 4.11.: Convex relaxation of SO(2). Set of SO(2) (4.11a). Connection between two elements
of SO(2) (4.11b). Convex hull of SO(2) (4.11c).

can either have a determinant equal to 1 or −1; matrices with a negative determinant correspond

to re�ections. A correction of those matrices with determinant equal to −1 could be achieved after

optimization by negation but there is no guarantee that these negated matrices lead to the optimal

solution.

A tighter relaxation is proposed in Horowitz et al. [2014] and Saunderson et al. [2014], in which

the matrices are required to be in the convex hull of SO(3). It was shown in Section 2.3.1 that the

convex hull of a nonconvex set is the minimum convex set that contains the set itself (cf. Equation

(2.21)).

In the following, the derivation of the convex hull is outlined for the 2D case, in which an intuitive

visualization is possible (Figure 4.11). Rotations in 2D are de�ned as:

SO(2) =

{[
cos (θ) sin (θ)

− sin (θ) cos (θ)

]
: θ ∈ [0, 2π)

}
. (4.17)

They include a well known analogy to unit-length complex numbers, which form the 1-sphere in

two-dimensional space. Thus, an alternative description is:

SO(2) =

{[
x y

−y x

]
: x2 + y2 = 1

}
. (4.18)

This 1-sphere is visualized in Figure 4.11a. Applying the criterion for a convex set, developed in

Section 2.3.1, one sees that SO(2) is nonconvex. This is shown in Figure 4.11b, where a shortest

connection of two elements in SO(2) is almost entirely outside the set. The convex hull of SO(2) is

the unit disk, pictured in Figure 4.11c:

conv (SO(2)) =

{[
x y

−y x

]
: x2 + y2 ≤ 1

}
. (4.19)
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3-dimensional rotations cannot be visualized as easily. A derivation of the convex hull is possible

via unit quaternions, which form a 3-sphere in R4. This derivation according to Horowitz et al.

[2014] and Sanyal et al. [2011] is provided in Appendix A.

Horowitz et al. [2014] and Saunderson et al. [2014] show that the convex hull of SO(3) can be
described as an LMI, which is the solution space of SDP (cf. Section 2.3.2). Explicitly, conv (SO(3))

is de�ned as:

conv (SO(3)) =
{
R ∈ R3×3 :

1 +R11 +R22 +R33 R32 −R23 R13 −R31 R21 −R12

R32 −R23 1 +R11 −R22 −R33 R21 +R12 R13 +R31

R13 −R31 R21 +R12 1−R11 +R22 −R33 R32 +R23

R21 −R12 R13 +R31 R32 +R23 1−R11 −R22 +R33

 � 0


.

(4.20)

The Rij refer to the respective values in R.

Now that the objective function and the constraint of optimization problem (4.11) are relaxed,

the �nal convex optimization problem is established:

minimize
Mij

∑
∀(i,j)∈E+

wMijdMij (4.21)

subject to M � 0

Mii = I3×3

Mij ∈ conv (SO(3)) , ∀(i, j) ∈ {1, . . . , n}, i < j.

The weights wMij are derived from the covariance matrix of the relative rotationsΣR?
ij
(see Equation

(4.6)),

wMij =
1

1 + tr
(
ΣR?

ij

) , (4.22)

which results in weights wMij ∈ (0, 1]. Note that the rank constraint for M is dropped because it is

nonconvex. While the cost function is only deployed for combinations of (i, j) for which a relative

rotation exists, the constraints are applied to all submatrices in M. The �rst constraint is given

by the condition that M is a Gramian matrix. The second constraint requires that every Ri is

orthogonal, thus Ri ∈ O(3), whereas the third constraint states that every Ri is in the convex hull

of SO(3), thus Ri ∈ conv (SO(3)). It is proven in Saunderson et al. [2014] that the orthogonality

constraint in combination with the convex hull constraint leads to a solution in SO(3):

conv (SO(3)) ∩O(3) = SO(3) (4.23)

A detailed work�ow of the semide�nite estimation of rotations is depicted in Figure 4.12. The

optimization problem (4.21) is a SDP (cf. Section 2.3.2), thus its standardized formulation allows the
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Figure 4.12.: Detailed work�ow of semide�nite estimation of rotations. Blue boxes show the indi-
vidual steps, yellow boxes the parametric outcome.

usage of various solvers. Once an optimal solutionM? is found, the global rotationsR?
i ∈ R? need to

be extracted. This is performed by a factorization, inverse to Equation (4.12), hence by an eigenvalue

decomposition of M?. The estimated global rotations are given by the three leading eigenvectors,

corresponding to the nonzero eigenvalues. These matrices are multiplied by
(
R?,1

)T
corresponding

to V1 in order to derive a solution compatible with the solution of the breadth-propagation of Section

4.2.2, in which the rotation of the starting vertex V1 is equal to the identity matrix.

Remark. Solving the optimization problem de�ned in (4.21) becomes computationally intense when

the problem size grows because the number of constraints grows quadratically in n. In order to ap-

proach this issue it might be su�cient to apply only a subset of the constraints Mij ∈ conv (SO(3)).

How this a�ects the solution will be examined in Section 5.2.1.

4.3.2. Lie algebraic rotation averaging

In the previous section, it was shown how global rotations for all n images are estimated in a SDP

using all relative rotations at once. This leads to a globally optimal solution R? with respect to a

relaxed objective function and solution manifold. The minimum of this objective function, given

the necessary simpli�cations, does not comprise the maximum likelihood solution of the original

problem, however. The goal of this section is to approach this issue. In the following, an iterative

least-squares optimization is presented, in which the domain of the objective function is de�ned

in SO(3) and which is solved in the respective Lie algebra so(3). The solution is a set of optimal

global rotations R??. This procedure is similar to the approach of Govindu [2004], where it was

de�ned for the Euclidean group SE(3) that contains translation parameters as well. In addition to

Govindu [2004], the approach presented in this thesis introduces prior information in form of weights

computed from the covariance matrices of the relative rotations.
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Again, the functional model is derived from Equation (2.4):

∆Rij = RiR
?
ijR

T
j . (4.24)

In contrast to dRij or dMij in (4.10) and (4.16), respectively, whose domains are R+, in (4.24) we

have dom ∆Rij = SO(3). If the relative rotations were noise-free, ∆Rij would be the 3×3 identity

matrix. Equation (4.24) is nonlinear in the unknown global rotations. In order to linearize it let

∆R??
i = R??

i R?T
i be the parameter o�set between the initial rotation R?

i ∈ R? (cf. Section 4.3.1)

and the optimal global rotation R??
i ∈ R??. Furthermore, let ∆R0

ij = R?
iR

?
ijR

?T
j be the reduced

relative rotation. Using these de�nitions and applying R??
i for the unknown global rotations, (4.24)

can also be written as:

∆Rij = R??
i R?T

i︸ ︷︷ ︸
∆R??

i

R?
iR

?
ijR

?T
j︸ ︷︷ ︸

∆R0
ij

R?
jR

??T
j︸ ︷︷ ︸

∆R??T
j

. (4.25)

Note that R?T
i R?

i = R?T
j R?

j = I3×3.

The next step of linearization considers the geometric properties of SO(3) as a di�erentiable

manifold (cf. Section 2.2.1). A mapping to the tangent space, the Lie algebra, SO(3) → so(3), is

performed by applying the logarithm map:

log (∆Rij) = log
(
R??

i R?T
i R?

iR
?
ijR

?T
j R?

jR
??T
j

)
. (4.26)

The linearized cost function is obtained by an approximation to (4.26) using the Baker-Campbell-

Hausdor� formula, which gives the solution to log (XY) for any (X,Y) in an arbitrary Lie group

[Gilmore, 1974]. Neglecting higher order terms, a �rst order approximation is given by log (XY) =

log (X) + log (Y). Accordingly, (4.26) can be approximated by:

log (∆Rij)︸ ︷︷ ︸
∆rij

≈ log
(
R??

i R?T
i

)︸ ︷︷ ︸
∆r??i

+ log
(
R?

iR
?
ijR

?T
j

)︸ ︷︷ ︸
∆r0ij

− log
(
R??

j R?T
j

)︸ ︷︷ ︸
∆r??j

(4.27)

∆rij ≈ ∆r??i +∆r0ij −∆r??j , (4.28)

with (4.28) being linear in the unknown parameter o�sets. Note that log
(
XT

)
= − log (X). This

approximation is exact only in case the Lie bracket, i.e. the commutator [X,Y] = XY − YX,

is zero, which is in general not true for elements of SO(3) or so(3), because rotations are not

commutative. Moreover, using (4.28) as a global metric to de�ne distances between two rotations

is not recommended, because it is not invariant to rotations, thus log (ZX) + log (ZY) 6= log (X) +

log (Y) ,Z ∈ SO(3) [Hartley et al., 2013]. However, in the course of the Lie algebraic averaging

algorithm presented in this section, o�sets between the initial rotations R?
i and the optimal values

R??
i are assumed to be small, i.e. only a small region in SO(3) close to the identity is considered.

Having de�ned a linearized cost function (4.28), the optimization problem can be established. For

that reason, Equation (4.28) is written in vectorial terms of a Gauss-Markov model v = J∆x−∆l.
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Let ∆r be a 3m+ × 1 vector of residuals, in which the individual costs of (4.28) are stacked and

let ∆r?? = [∆r??1 , . . . ,∆r??n ]T be a 3n × 1 vector of parameters, in which the unknown global

rotations in axis-angle representation are stacked. Analogously, ∆r0 is a 3m+ × 1 vector of reduced

relative rotations. The 3m+ × 3n Jacobian matrix J =
[
∂∆rij/∂∆r??i , ∂∆rij/∂∆r??j

]
,∀(i, j) ∈ E+

is composed by positive and negative 3×3 identity matrices. Then, ignoring the approximate, (4.28)

is written as:

∆r = J∆r?? +∆r0. (4.29)

This leads to the unconstrained quadratic optimization problem

minimize
{∆r??1 ,...,∆r??n }

∆rTW∆r∆r . (4.30)

W∆r is a [3m+ × 3m+] weight matrix, computed from each individual covariance matrix of the

relative rotation ΣR?
ij
, ∀(i, j) ∈ E+ in order to control its in�uence on the solution, using a sigmoidal

weighting function [Krarup et al., 1980]:

W∆rij =
1

1 +
(
λ tr

(
ΣR?

ij

))ν I3×3 (4.31)

λ =
1

w0.5
, ν = 4.

Parameters λ and ν control the weighting, in particular, regarding the position of the halfweight

w0.5, the point where the weight is equal to 0.5, and the steepness at that point. These values have

to be adjusted respecting the expected accuracy of the relative rotations. ν is set to a common

value in photogrammetric estimation (see e.g. Rottensteiner [2001]) and w0.5 is set according to the

maximum trace of the involved covariance matrices:

w0.5 = max
∀(i,j)∈E+

(
tr

(
ΣRij

))
, (4.32)

which encourages a rather soft weighting and avoids large discrepancies between individual weights.

The averaging is performed iteratively and, after each iteration, the parameters are updated by

R??
i = exp (∆r??i )R?

i . The updated parameters serve as initialization for the subsequent iteration.

This corresponds to an alternating map between the manifold SO(3) and its Lie algebra so(3). A

detailed work�ow of the Lie algebraic averaging is depicted in Figure 4.13. Note that the Jaco-

bian J is constant consisting of only identity- and zero-submatrices and only has to be computed

once. Thus, only the reduced relative rotations have to be recomputed in every iteration taking

the updated global rotations into account. Iteration is performed until convergence, i.e. the factor(
∆rTW∆r∆r

)b−1−
(
∆rTW∆r∆r

)b
(∆rTW∆r∆r)b−1+(∆rTW∆r∆r)b

in iteration b must be below a given threshold τ∆r.

Remark. The iterative design of the presented algorithm in principle allows for a reweighting based

on the respective residual for the purpose of detecting outliers in the relative rotations as proposed in

Chatterjee & Govindu [2013]. This may further extend the outlier detection during the view-graph
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Figure 4.13.: Detailed work�ow of Lie algebraic rotation averaging. Blue boxes show the individual
steps, yellow boxes the parametric outcome.

breadth-propagation. In this case, the computation of the weight matrix and the Jacobian (see

Figure 4.13) must be conducted within each iteration.

4.4. Estimation of translations

The previous chapter was dedicated to the estimation of global rotations. In this chapter, the

focus lies on the second type of parameters that is necessary to describe the image orientation:

global translations. In most approaches of global image orientation, the estimation of translations

is founded on known rotations (e.g. [Ke & Kanade, 2007; Martinec & Pajdla, 2007; Arie-Nachimson

et al., 2012; Arrigoni et al., 2015b; Cui et al., 2015]). A reason for this is that the task reduces to a

convex optimization problem.

The functional model in form of linear homogeneous constraints, proposed in Section 4.4.1, is

similar to the model presented in Cui et al. [2015] using local pairwise intersections. A visualization

of this problem is shown in Figure 4.14: Given pairwise local reconstructions of one point, rotated by

the global rotations, the goal is to derive a consistent solution, which corresponds to a unique point

position. In the course of this thesis, the model of Cui et al. [2015] is extended in two signi�cant ways:

Firstly, a new strategy to �nd homologous point tracks, taking also the point distribution in image

space into account, is explained in Section 4.4.2. This is followed by a novel outlier detection based
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Figure 4.14.: Visualization of the problem of estimating global translations from global rotations,
relative translations, and a homologous point.

on a combination of a reprojection of pairwise spatial intersections and a triplet-scale-constraint,

derived in Section 4.4.3, which overcomes the frequent occurrence of erroneous homologous points. In

this way, also outliers that cannot be found in a pairwise setting, e.g. because they ful�ll the epipolar

constraint, are detected. Finally, in Section 4.4.4 the optimization problem will be established and

the strategy to solve it will be given.

4.4.1. Construction of linear constraints

In this section, it is shown how linear constraints for the estimation of the global translation pa-

rameters are derived from global rotations, relative translation directions and homologous points. It

is assumed that the relative translation directions are rotated by the global rotations so that they

represent the relative translations in the global instead of the local pairwise coordinate system, i.e.

t̃?ij = R??
i t?ij , ∀(i, j) ∈ E+. The only requirement in order to formulate these constraints is that there

are points, which have been observed in at least three images. In the following, these constraints

will be deduced using the example of the image triplet I = {Ii, Ij , Ik}.

Let there be one object point Pl that is observed in the image triplet I. Given the global rotations
{R??

i ,R??
j } and the relative translation t̃?ij , for which the functional relation to the unknown global

translations is given by t̃?ij =
tj−ti

‖tj−ti‖ , point Pl can be estimated by spatial intersection. Noisy

rotations and relative translations in general make a unique solution impossible, hence the rays do

not intersect in object space. A common way to derive an approximate solution is to take the average,

i.e. the mid-point of the common perpendicular of both rays as depicted in Figure 4.15a, which is

called the mid-point-method (e.g. [Hartley & Sturm, 1997]). The spatial intersection equation is
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Figure 4.15.: Pairwise spatial intersection leads to two solutions {Pl
i,P

l
j} that are closest to each

other in object space (4.15a). Two pairwise spatial intersections of the same point Pl

(4.15b).

derived from equation (2.2) by inversion:

Pl
i = ti + slijp

l
i, Pl

j = tj + sljip
l
j , with (4.33)

pl
i = R??

i
npl

i, pl
j = R??

j
npl

j ,

Pl
ij =

1

2

(
Pl

i +Pl
j

)
. (4.34)

slij and slji are unknown scale factors, which are lost by projection to image space and which can be

estimated in an unconstrained linear program using the mid-point-method. It shall be noted that

this method does not give an optimal solution in the sense of least squared residuals in image space,

which is true in particular for a projective coordinate frame in which common perpendicularity and

mid-point are meaningless, i.e. they are not invariant to projective transformation. In the course

of this thesis, an Euclidean (and thus metric) coordinate frame is used. For the ease of reading in

the following, all point observations are assumed to be rotated and the superscript n· is ignored,
as it is de�ned in (4.33). Moreover, speaking of general geometric properties, speci�c instances of

the relative translations, i.e. ·?, are ignored and homologous rays are assumed to intersect in object

space.

The estimated object coordinates of Pl
ij are computed relative to images Ii and Ij and only

determined up to a 7 parameter 3D Helmert transformation (see also Figure 2.1 in Chapter 2).

Because global rotations R?? are assumed to be known, three of these seven parameters are given.

The four remaining parameters are three translations and one scale, thus a linear transformation

which applies to the triangle ∆
(
titjP

l
ij

)
with the three edges {tij , slijpl

i, s
l
jip

l
j} as depicted on the

left side in Figure 4.15b.

In order to formulate a constraint from (4.33) regarding the global translations of all images in

I, point Pl is reconstructed by another pairwise local spatial intersection using the third image Ik
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(see Figure 4.15b on the right side):

Pl
j = tj + sljkp

l
j , Pl

k = tk + slkjp
l
k, with (4.35)

Pl
jk =

1

2

(
Pl

j +Pl
k

)
. (4.36)

By assuming that all observations {pl
i,p

l
j ,p

l
k} correspond to the very same point in object space,

equations (4.34) and (4.36) can be equated, neglecting the multiplication by 1/2:

ti + slijp
l
i + tj + sljip

l
j = tj + sljkp

l
j + tk + slkjp

l
k. (4.37)

While there are only three independent point observations, four di�erent scales {slij , slji, sljk, slkj}
have to be computed. Constraint (4.37) could be used to form a linear equation system in the manner

of Jx = b, in which the Jacobian is populated by positive and negative 3 × 3 identity matrices.

However, tj would drop out of the equation, which is not desirable. Instead, every constant factor in

Equation (4.37) can be also written in terms of the unknown global translations. Let us consider the

triangle ∆
(
titjP

l
ij

)
exemplarily. Because the directions of all edges in this triangle are known in

the global coordinate system, both observations pl
i and pl

j can be described in terms of the relative

translation:

pl
i = Rγl

ij
tij pl

j = Rγl
ji
(−tij). (4.38)

Rγl
ij
and Rγl

ji
are two rotation matrices that can be computed from angle γlij = arccos

(
tij · pl

i

)
and

axis r̄lij = tij × pl
i and likewise for Rγl

ji
using Equation (2.9). With tij =

tj−ti
‖tj−ti‖ , Equation (4.37)

changes to:

ti+slijRγl
ij

tj − ti
‖tj − ti‖

+tj+sljiRγl
ji

ti − tj
‖tj − ti‖

= tj+sljkRγl
jk

tk − tj
‖tk − tj‖

+tk+slkjRγl
kj

tj − tk
‖tk − tj‖

. (4.39)

Using
Cl

ij =
slij

‖tj−ti‖Rγl
ij
, Cl

ji =
slji

‖tj−ti‖Rγl
ji
,

Cl
jk =

sljk
‖tk−tj‖Rγl

jk
, Cl

kj =
slkj

‖tk−tj‖Rγl
kj
,

(4.39) reduces to:

ti +Cl
ij (tj − ti) + tj +Cl

ji (ti − tj) = tj +Cl
jk (tk − tj) + tk +Cl

kj (tj − tk)

⇔
(
Cl

ij −Cl
ji

)
(tj − ti) + ti + tj =

(
Cl

jk −Cl
kj

)
(tk − tj) + tj + tk. (4.40)

The derivation of (4.40) is exemplary for the combination {IiIj} and {Ij Ik}. Of course, it can

be also formulated for the two remaining combinations {IiIj},{IiIk} and {IiIk},{Ij Ik}. By putting

everything on one side of the equation, the three following linear homogeneous constraint functions
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Figure 4.16.: Non-overlapping point track and two possible solutions

are established:(
I3×3 −Cl

ij +Cl
ji

)
ti +

(
Cl

ij −Cl
ji +Cl

jk −Cl
kj

)
tj +

(
−I3×3 −Cl

jk +Cl
kj

)
tk = 0. (4.41)(

−Cl
ij +Cl

ji +Cl
ik −Cl

ki

)
ti +

(
I3×3 +Cl

ij −Cl
ji

)
tj +

(
−I3×3 −Cl

ik +Cl
ki

)
tk = 0. (4.42)(

I3×3 −Cl
ik +Cl

ki

)
ti +

(
−I3×3 +Cl

jk −Cl
kj

)
tj +

(
Cl

ik −Cl
ki −Cl

jk +Cl
kj

)
tk = 0. (4.43)

with Cl
ik =

slik
‖tk − ti‖

Rγl
ik
, Cl

ki =
slki

‖tk − ti‖
Rγl

ki
.

Only two of these three equations are linearly independent (e.g. (4.43) results from the di�erence

of (4.41) and (4.42)). In Section 4.4.3, it will be shown how these redundant constraints are used

to detect outliers in the homologous points. Note that the only unknowns in (4.41) - (4.43) are the

global translations {ti, tj , tk}, no object coordinates of Pl are estimated. Often, a point is visible

in more than three images. In this case, constraints can be formulated for every independent triplet

of images that can be composed.

Given a set of n images I = {I1 . . . In}, it is unlikely that there is one point, which is visible in

every image. In order to be able to estimate the global translations of all images, points have to be

found that ful�ll a certain overlapping-criterion. A set of points that covers all images is called an

overlapping point track .

De�nition 2. An overlapping point track is a set of points, so that in every image in I, at least
one of these points is observed. If the overlapping point track has more than one element, every

point in this set must be observed in at least two images, in which one or more other points are also

observed.

It is important that two points within an overlapping point track share at least two images in

which they are observed. A counterexample is visualized in Figure 4.16. Both sub�gures 4.16a and

4.16b show the same point track. Triplets are marked in light colors. The object points Pl and

Pm only share image I3, in which they both are observed. Thus, the scale information cannot be

transferred between both triplets and both solutions in 4.16a and 4.16b are possible. In consequence,

the problem cannot be solved.

In Figure 4.17, an example of an overlapping point track is shown. Both triplets share the edge
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Figure 4.17.: Overlapping point track. Only one solution is possible

between t2 and t3 and there is only one possible solution. Hence, when constructing point tracks,

this requirement has to be taken into account. A strategy to select appropriate points is examined

in the following section.

4.4.2. Selection of points

In the previous section, it was explained how linear homogeneous constraints for the unknown global

translations are derived from pairwise relative spatial intersections. It was shown that an overlapping

point track has to be found in order to estimate global translations for all n images. Considering all

existing homologous points would be computationally too demanding, making a selection of points

inevitable. This section examines the criteria under which these points are selected.

These criteria are heuristic, twofold and originate from certain point characteristics that, given

the knowledge about how the functional constraints are established, tend to lead to an accurate

solution. On the one hand, a point is favored the more images it is observed in. These points are

indicative of being trustworthy, bear a strong constraint over a large number of images and many

di�erent triplet combinations can be used to build constraints, enhancing the robustness (cf. Section

4.4.3). On the other hand, the distribution of points in image space has an impact on the estimation

of global translations. The second criterion is not obvious, because the estimation of the location of

the image is not related to the direction of rays, as, for instance, when considering spatial resection.

It is derived via scale relations in image triplets, which per se do not depend on the diversity of

ray directions. Positive e�ects of a wide distribution of observations, however, reveal themselves

indirectly in form of a higher variety regarding depth and visibility in di�erent sets of images. It

follows that points observed in a very narrow region in image space are more likely have similar

depth and are observed in similar image sets. Consequences this may entail are pictured in Figures

4.18c and 4.18d. A depth, large compared to the base length, leads to a glancing intersection and

an imprecise estimation of the scales, shown with the error ellipses in Figures 4.18a and 4.18c. This

re�ects on the constraint functions (4.41)-(4.43) and, thus, on the estimation quality of the global

translations. Not considering the distribution of points in image space might lead to a situation

shown in Figure 4.18d, in which, for instance, points are chosen only based on the number of images

they are measured in. A counterexample (Figure 4.18b) shows that next to a higher variety of

depths also further triplet combinations may occur. This clearly enhances the statistical accuracy
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Figure 4.18.: Di�erent selection of points: suitable intersection (a) and points with wide distribution
in image space (considering image I1) (b); glancing intersection (c) and points with
narrow distribution in image space (d).

and robustness, because the constraints are founded on di�erent relative translations.

A set of point tracks scoring highest in both criteria while accomplishing the overlapping require-

ment derived in Section 4.4.1, in general, is highly unlikely, because often points with the largest

number of observations tend to be in similar areas of the images. Furthermore, evaluating the distri-

bution of points in image space while considering a new candidate is cumbersome: �rstly, the number

of points already added might vary from image to image and, secondly, the distribution might be

suitable in one image and inappropriate in another. Finding a proper threshold that distinguishes

between various distributions, the number of points per image and the total number of images in

which the point is observed, is delicate. Thus, in order to avoid to unnecessarily complicating the

point selection, the following twofold strategy is used: In the �rst part, a �xed number of point

tracks is constructed while the distribution criterion is only applied to the image with minimum

distance to all other images regarding the view-graph, i.e. the image corresponding to the starting

vertex V1 (cf. Section 4.2.2). In the following, this image will be referred to as the starting image.

In the second part, the distribution of points in all images is examined successively and additional

points are added if the distribution is not good enough according to the distribution criterion.

All points are sorted by the number of images they are measured in. The image space is divided

into �ve regions as shown in Figure 4.19. In this way, four points in four di�erent regions are

necessary to guarantee that at least one point lies apart from the others. For the �rst point track,

the topmost point observed in any region in the starting image is taken. The region this point is

observed in is �agged. The point track is then completed by stepping down the sorted point list
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Figure 4.19.: An image is divided into �ve di�erent regions

adding further points that are observed in images, not yet covered by points in the track, while only

ful�lling the overlapping requirement. From the second point track on, the topmost point is taken

that is observed in the region with minimal point count. The track is completed as described before.

After a certain number of point tracks is constructed in this way, in the second part of the point

selection, the point distribution is analyzed successively in every image. If one image only has points

in three or less di�erent regions, additional points are selected until at least four of the �ve regions

are covered. This number is derived by inspection of Figure 4.19: Points in three di�erent regions

might by coincidence lie close together. If four di�erent regions are covered at least one point must

lie apart considerably.

Note that these additional points do not necessarily form a complete point track but eventually

allow the construction of further constraints with new combinations of images. The overlapping

requirement is guaranteed by the existing complete point tracks. In the end, points are selected so

that in every image at least four di�erent regions are covered by at least one point.

4.4.3. Outlier detection

In this section, a strategy is explained to detect outliers in the selected point tracks. Until now,

point correspondences have only been �ltered using the coplanarity constraint (cf. Section 4.2.1).

Erroneous points that lie in epipolar planes of two overlapping images are still present. Moreover,

because global rotations have been estimated (see Section 4.3), some erroneous points might not

even lie in an epipolar plane anymore.

A spatial intersection of these points leads to wrong scales and, consequently, to inconsistent con-

straints. Therefore, a detection is necessary before the optimization is solved. In the following, two

individual �lters are presented that aim at di�erent types of outliers. The �rst one uses the reprojec-

tion error of the pairwise spatial intersection in image space, i.e. the normalized di�erence between

the observation and the reprojected point using the collinearity equations (2.1). For example, for

the image pair {Ii, Ij} it is required:

∆p̄l
ij = ‖pl

i − p̄l,i
ij ‖+ ‖p

l
j − p̄l,j

ij ‖ ≤ τr, (4.44)

with p̄l,i
ij and p̄l,j

ij being the projection of Pl
ij in images i and j, respectively, and τr being another
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threshold. The reprojection error comes as a byproduct of the spatial intersection that has to be

performed in order to establish the constraints in (4.41)-(4.43). Thus, all pairwise combinations for

which Equation (4.44) is not ful�lled are rejected.

In general, erroneous points lying almost in one epipolar plane are not detected by a high repro-

jection error because both rays nearly intersect. The second �lter aims at detecting these cases that

often occur when the images contain repetitive structure. Given a triplet of images {Ii, Ij , Ik} with
a point Pl observed in all three images, all homogeneous constraint functions (4.41)-(4.43) can be

established. Now, the triplet is transformed to a local coordinate system by setting ti = 03×1. The

locations of the two remaining images tj and tk are determined up to scale. For every constraint

(4.41)-(4.43) the following tripletwise linear homogeneous equation system is established, using the

matrices Cl
i,C

l
j ,C

l
k as substitutions for the respective matrices in (4.41)-(4.43):

[
Cl

i Cl
j Cl

k

]
0

tj

tk

 = 0

⇔ Cl
jtj = −Cl

ktk. (4.45)

Now, without loss of generality, the distance between Ii and Ij is assumed to be equal to one, so that

a local coordinate system is de�ned. Then, (4.45) can be written as:

Cl
jtij = −sltijkC

l
ktik

⇔ sltijk = −
Cl

jtij

Cl
ktik

, (4.46)

by introducing the scale sltijk , which describes the ratio between the two distances ‖tj − ti‖ and
‖tk − ti‖. In this way, a consistency constraint is established, which leads to the following theorem.

Theorem 2 (Triplet consistency constraint). By assuming ti = 03×1, Ri = R??
i and ‖tj−ti‖ = 1 to

de�ne a local coordinate system, the scale sltijk describes the distance ‖tk−ti‖ in this local system. If

the observations of a point Pl, i.e. {pl
i,p

l
j ,p

l
k}, are homologous and it is tij =

tj−ti
‖tj−ti‖ , tik = tk−ti

‖tk−ti‖ ,

tjk =
tk−tj

‖tk−tj‖ , then is must be:

−
(
Cl

ij −Cl
ji +Cl

jk −Cl
kj

)
tij(

− I3×3 −Cl
jk +Cl

kj

)
tik

=
−
(
I3×3 +Cl

ij −Cl
ji

)
tij(

− I3×3 −Cl
ik +Cl

ki

)
tik

=
−
(
− I3×3 +Cl

jk −Cl
kj

)
tij(

Cl
ik −Cl

ki −Cl
jk +Cl

kj

)
tik

= sltijk .

(4.47)

Proof. Equation (4.47) follows from (4.45)-(4.46) applied to all three constraints in(4.41)-(4.43),

so it remains to show that these constraint functions are valid. If the observations and relative

translations are correct then the estimated scales {slij , slji, slik, slki, sljk, slkj} (see Equation (4.37)) and

rotations {Rγl
ij
,Rγl

ji
,Rγl

ik
,Rγl

ki
,Rγl

jk
,Rγl

kj
} (see Equation (4.38)) are exact and (4.47) follows from
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Figure 4.20.: Erroneous observation in one image: 4.20a: three di�erent pairwise spatial intersections
(black dots), dots in red show the respective mean position using (4.36). 4.20b-4.20d:
small dots in black show the true locations of the three images which are connected
according to the three possible combinations {IiIj}, {Ij Ik} (4.20b), {IiIj}, {IiIk} (4.20c)
and {IiIk}, {Ij Ik} (4.20d). Small dots in red with superscript ·o show the locations of
the images estimated according to the spatial intersection. The ratio of the bases in
all three �gures is di�erent.

(4.41)-(4.43) and (4.45)-(4.46). If one observation or relative translation is an outlier, there will be

three di�erent pairwise spatial intersections of Pl as depicted in Figure 4.20a. The constraint func-

tions (4.41)-(4.43) are ful�lled only if at least one out of {ti, tj , tk} is changed (Figures 4.20b-4.20d).

Note that in these �gures always two translations are changed according to Equation (4.34) (see the

small red dots with superscript ·o). This, however, changes the ratio between ‖tj−ti‖ and ‖tk−ti‖,
which is a contradiction.

In general, having noisy observations, relative translations and estimated global rotations, Equa-

tion (4.47) is not ful�lled. Thus, a suitable threshold that allows the detection of contradicting

triplets needs to be found. In order to do that, all three estimations of sltijk are stacked into a vector

sltijk , which is normalized and of which the standard deviation σsltijk
is computed. Then, after the

scales have been computed for all triplet compbinations, the following condition must be true:

σsltijk
≤ τs, (4.48)

with σsltijk
being the standard deviation of the three elements in sltijk and τs being another threshold

computed from the vector over all normalized standard deviations slt. For every triplet of images,

the constraints (4.41)-(4.43) are established if, and only if, Equations (4.44) and (4.48) are ful�lled.
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Figure 4.21.: Detailed work�ow of global translation estimation. Blue boxes show the individual
steps, yellow boxes the parametric outcome.

4.4.4. Solving the homogeneous linear equation system

In the previous sections, it was shown how linear constraints for individual global translations are

established, how a suitable set of point tracks is found and how outliers in the image coordinates of

the homologous points are detected. A detailed schematic overview of the work�ow of translation

estimation, summarizing these steps, is visualized in Figure 4.21. In this section, the estimation of

global translations is examined.

Given a point Pl that is observed in nPl images, in total
(n

Pl

3

)
di�erent triplet combinations are

possible. For each of these triplets, two linear independent constraint functions are established. Note

that while all three linear constraints are computed in order to check triplet consistency (Equation

(4.47)), just two of these are taken for the �nal estimation using a randomized selection. These are

stacked into a single matrix C so that the following optimization problem is established:

minimize
{t1,...,tn}

‖wT
t Ct‖ (4.49)

subject to ‖t‖ = 1 ,

with t being a 3n × 1 vector consisting of all unknown global translations. Vector wt contains
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weights that are computed for every triplet combination based on a combination of the covariance

matrices of the respective relative translations. The weight for a triplet {Ii, Ij , Ik} is de�ned as:

wt,ijk =
1

1 +

(
λ tr

(
Σ̄t?ij

)
∆(ijk)

)ν , (4.50)

with
(
Σ̄t?ij

)
∆(ijk)

being the mean covariance matrix for all three relative translations in the triangle

∆(IiIj Ik). λ and ν are de�ned as in Equation (4.31) and the halfweight is set to

w0.5 = max
∀(i,j)∈E+

(
tr

(
Σtij

))
. (4.51)

The trivial solution of the objective function is t = 0, which is avoided by the constraint ‖t‖ = 1.

The length of t is set to one because of simplicity (see below), any other nonzero value is also

possible. The feasible solution manifold to (4.49) is the nullspace of C. It is computed via a SVD

of C:

C = USVT . (4.52)

The orthonormal 3n× 3n matrix V contains the orthogonal basis vectors of the rowspace of C. A

least-squares solution to the problem (4.49), provided a regular matrix C, is given by the rightmost

column of V, i.e. t? = [0, 0 . . . , 0, 1]T V. Because V is orthogonal, the constraint ‖t‖ = 1 is ful�lled.

A derivation of this solution is given in Appendix F.

At the same time, the constraint ‖t‖ = 1 �xes the scale of the estimated image orientation

parameters. This, in combination with the already estimated global rotations, de�nes four of the

seven datum parameters. Thus, a solution of the optimization problem (4.49) is only given up to

a three-dimensional translation. Because of this datum defect, matrix C is rank de�cient and only

of rank 3n − 3. There are two ways of approaching this issue. Firstly, one could eliminate three

columns of C, which solves the rank defect. The global translation parameters relative to the deleted

columns are then set to 0. A second approach, which is utilized in this thesis, bears on not taking

the rightmost column of V but the 3n − 3rd column to take the rank defect into account. In this

case, the barycenter of the estimated global translations lies at 0.

4.5. Bundle adjustment

The �nal step of the global image orientation work�ow is a bundle adjustment. In the previous

sections of Chapter 4, the focus was on the estimation of initial values for the exterior orientation

parameters for this nonlinear and nonconvex optimization. It uni�es both types of unknowns of

image orientation, i.e. rotation and translation, as well as object coordinates of the observed ho-

mologous points. Initial values for the unknown object coordinates of the homologous points are

computed using an average of multiple pairwise spatial intersections. The functional model is given
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by the well known collinearity equations (Equation (2.1)). The stochastic model is given by the

covariance matrix of the observations, which are assumed to be uncorrelated and of equal accuracy.

Bundle adjustment is considered to give a maximum likelihood solution of the image orientation

problem but it depends on the quality of the initial values.

Because bundle adjustment is a standard photogrammetric procedure, only some important notes

about the implementation are given.

Each point, as can be seen in Equation (2.1), leads to two individual observation equations, one

for the x- one for the y-coordinate in image space. At the same time each observation equation

includes a set of at least 9 unknown parameters, i.e. {ωi, φi, κi, ti,x, ti,y, ti,z, P
l
x, P

l
y, P

l
z}. As part of

this thesis, the interior orientation parameters {hx, hy, c} as well as any distortion coe�cients are

assumed to be constant and known if not stated otherwise. In general, the overall redundancy is

high. However, it happens that some points or images do not have as many observations as others.

In order to maintain a minimum amount of local redundancy and still keeping a high amount of

images and points in the optimization, the minimum numbers of observations are set to eight for an

image (four points) and six for an object point (three images).

In the �rst iteration all observations are weighted equally. Then, observations are reweighted in

every iteration based on the residuals of the previous iteration ∆p̂l
i =

[
∆p̂li,x,∆p̂li,y

]T
, similar to

Equation (4.31) [Krarup et al., 1980]:

Wl
i =

[
wl
i,x 0

0 wl
i,y

]
, (4.53)

wl
i,x =

1

1 +
(
λ∆p̂li,x

)ν ,

wl
i,y =

1

1 +
(
λ∆p̂li,y

)ν .

Again, λ and ν are de�ned as in (4.31). The following halfweight is used:

w0.5 = 0.9 max
∀i∈I,∀k∈P

∆p̂. (4.54)

After a certain number of iterations, all observations with residuals larger than w0.5 are considered

to be outliers and excluded from the estimation. If a point or an image remains with less than

the minimum number of observations de�ned above, it is excluded as well. This is repeated for a

certain number of times or until max∀i∈I,∀k∈P∆p̂ reaches a value that is in the trust region of the

given problem. Note that by the de�nition of an outlier given above, the algorithm will always

�nd at least one outlier. Thereafter, a �nal, unweighted estimation is conducted and iterated until

convergence. As in previously presented least-squares optimization, a convergent solution is found

when
(
vTWv

)b−1−
(
vTWv

)b
(vTWv)b−1+(vTWv)b

in iteration b is below a given threshold.
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A bundle adjustment �nds a (local) optimum only up to a seven parameter similarity transfor-

mation. This rank de�ciency is related to the datum de�nitions made in the previous sections: One

rotation is set as the identity matrix (Section 4.2.2), and translation and scale are de�ned as de-

scribed in Section 4.4.4. There are several ways to deal with this rank de�ciency such as introducing

control points with known object coordinates or a free network adjustment. In this thesis, the datum

is assumed to be known and �xed. Thus, seven parameters are excluded from the estimation and

set according to the de�nitions made in Sections 4.2.2 and 4.4.4.
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5. Experiments

In this chapter, experimental results are presented in order to evaluate the global image orientation

approach described in Chapter 4. There are three fundamental criteria, for which the proposed

model is examined, corresponding to the objective de�ned in Section 1.1: accuracy, robustness and

applicability to various kinds of image data. First, all the di�erent data used for evaluation are

presented in Section 5.1. These data are selected to assess the method in the three directions and

can be divided into three categories, into which the following sections are arranged: Experiments

on synthetic data are described in Section 5.2. These data are suitable to evaluate the accuracy

(5.2.1) and robustness (5.2.2) of the method, because the ground truth is known and one has full

control over the amount and distribution of noise and outliers. The second category is benchmark

data, studied in Section 5.3, consisting of real images, for which ground truth information regarding

their orientation parameters is given. Therefore, the accuracy of the approach is re-evaluated based

on a realistic environment including a comparison to related state-of-the-art methods (5.3.1), which

allows to position the method in the broad �eld of existing approaches. Moreover, a detailed analysis

of the convergence of the Lie algebraic averaging will be pursued (5.3.2) as well as an investigation of

the elimination of outliers in the homologous points (5.3.3). The last category encompasses various

types of data and is examined in Section 5.4. Experiments on these data shall reveal the versatility

of the approach. Examination includes images from image-hosting websites (5.4.1) and two di�erent

sets of self-acquired images from an unmanned aerial vehicle (UAV) (5.4.2).

5.1. Data and implementation

This section gives an overview over the data used for the evaluation of the method that is proposed

in this thesis. This data is structured into three di�erent groups: synthetic data, benchmark data and

various data, which has di�erent characteristics. On each of these di�erent data, speci�c experiments

are conducted in order to broadly evaluate the proposed approach.

Synthetic data

The synthetic data are based on a linear camera movement in one direction with all cameras pointing

in a similar direction and a relatively high overlap as it occurs in UAV photogrammetry or mobile

mapping image acquisition, for instance. It consists of 50 images and 2000 object points, distributed

as demonstrated in Figure 5.1a. Object points are colored with respect to the number of images
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(a) 3D distribution of points and images
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(b) projected points in two
examplary images

Figure 5.1.: 3D distribution of synthetic image data (5.1a) and point distribution in two exemplary
images (5.1b), highlighted in red in 5.1a.

they are observed in, varying between two (blue) and 18 (yellow) observations. The distribution

of observations in image space is exemplarily shown in Figure 5.1b. For a reasonable comparison

of the results, a metric scale is introduced to the synthetic coordinate system. According to that,

images are acquired in a range of approximately 50m in X-direction and variations of [−2, 2]m in

Y - and [−0.5, 0.5]m in Z-direction. Object points are in an average distance of 10m to the closest

camera. This con�guration is based on a facade observation from terrestrial and/or UAV images.

The interior orientation of the cameras is assumed �xed, representing a wide-angle con�guration

with h = (400, 300)px and c = 600px. Thus, the overlap of the images is relatively high. Assuming

no noise on the homologous points, 482 relative orientations can be computed which leads to a graph

density of approximately 0.39, i.e. 39% of the maximum number of possible edges exist. Higher

noise leads to less relative orientations and consequently a lower graph density.

These data are used to allow an exhaustive analysis of the accuracy of the approach. Various noise

levels on the observations are realized in order to examine the propagation of uncertainties between

the individual optimizations. Moreover, the robustness of the breadth-propagation is evaluated.

The control of the rate of outliers in the relative orientations allows to de�ne a breakdown point of

the algorithm. Finally, the outlier detection during translation estimation is investigated.

Benchmark data

The benchmark data consist of four di�erent image sets, which were originally published in Strecha

et al. [2008]: fountain-P11, Herz-Jesu-P25, castle-P19 and castle-P30. These image sets comprise

between 11 and 30 images taken in an arc-like (fountain-P11 and Herz-Jesu-P25 ) or circular ar-

rangement (castle-P19 and castle-P30 ), corrected for radial distortion. Exemplary images of these

sequences are shown in Figure 5.2. The two castle-sequences picture the same scene, but the se-
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(a) fountain-P11 (b) Herz-Jesu-P25 (c) castle-P19/castle-P30

Figure 5.2.: Examplary images of the benchmark datasets [Strecha et al., 2008].

lection and the number of images are di�erent. Images were taken with a Canon EOS D60 with

APS-C sensor (22.5mm ×15.0mm) at a resolution of 3072px ×2048px and constant interior orien-

tation parameters. This results in a pixel size of approximately 7.32µm. For exterior and interior

orientation parameters, a ground truth based on laser scanning and a camera calibration exist (cf.

Strecha et al. [2008] for more details). This ground truth and calibration information is given in

form of projection matrices for every image. Additionally, for every image the Exif-information

(Exif ∼ exchangeable image �le format) is provided, in which a focal length of c = 20mm is stored.

Homologous points have been computed using Micmac [Pierrot-Deseilligny & Paparoditis, 2006], an

open source tool for image orientation and dense matching1.

In order to compare the estimated global orientation parameters to the ground truth, both coor-

dinate systems have to be aligned. The ground truth coordinate system is moved to a coordinate

system centered in the starting image (as de�ned in Section 4.2.2) and rotated so that t1GT = 03×1

and R1
GT = I3×3. The scale adaption is applied to the estimated orientations instead so that the

distance of the two farthest images is equal. This allows for a metric comparison to the ground

truth.

The benchmark data allow to transfer the �ndings of the synthetic data to a more realistic

environment. The accuracy of the approach is evaluated and compared to various state-of-the-art

methods. Moreover, a realistic distribution of outliers in the homologous points allows for a more

convincing examination of the outlier detection.

Various data

In the last section of this chapter, experiments on various large datasets are presented. These shall

underline the variability of the proposed approach. First, publicly available data from image-hosting

websites are processed, which show sights and places in Europe and North America (see exemplary

1http://logiciels.ign.fr/?Micmac

http://logiciels.ign.fr/?Micmac


92 5. Experiments

(a) Alamo (b) Ellis Island

(c) Gendarmenmarkt (d) Madrid Metropolis

(e) Montreal Notre Dame (f) Notre Dame de Paris

(g) NYC Library (h) Piazza del Popolo

(i) Roman Forum (j) Tower of London

(k) Vienna Cathedral (l) Yorkminster

Figure 5.3.: Examplary images of the datasets from image-hosting websites [Wilson & Snavely, 2014].

images in Figure 5.3. Results for these data are published in Wilson & Snavely [2014]2 together

with the orientation results of Bundler, including the observed homologous points. The Notre Dame

de Paris dataset was published in the course of the photo-tourism project [Snavely et al., 2006]3.

The number of images in these datasets, which are useful for reconstruction, varies between 230

and 1062 (see also Table 5.6 in Section 5.4.1). These images were not taken with the purpose of

photogrammetric reconstruction, which has two major consequences: First, the actual object of

interest is not necessarily in focus or even pictured at all, because often persons are the central

part of the images. Second, the acquired images have a variety of di�erent camera models with

di�erent interior orientation parameters. Approximate values for these parameters are extracted

from the Exif-information and are provided with the data. Note that these image sets also include

processed images like panoramic images, stitched from several individual images. Using the provided

homologous points, a preselection of images has already taken place.

Secondly, self-acquired images from two di�erent UAV-�ights are evaluated. These systems be-

2http://www.cs.cornell.edu/projects/1dsfm/
3http://phototour.cs.washington.edu/datasets/.

http://www.cs.cornell.edu/projects/1dsfm/
http://phototour.cs.washington.edu/datasets/
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(a) Leibniztempel (b) Wettbergen

Figure 5.4.: Examplary images of the two UAV �ights.

come more and more useful for photogrammetric reconstruction and mapping tasks. To show the

variability of the approach, two di�erent kinds of �ights are chosen, one around the Leibniztempel in

Hanover, Germany, in which the images are taken from di�erent perspectives all around the building,

the other showing a housing development area in Wettbergen in the south of Hanover. These images

are taken in a grid, all pointing downwards like in a setting of airborne photogrammetry. Images

of the �ight around the Leibniztempel are captured with a Canon Digital IXUS 100 IS. The whole

sequence consists of 184 images with a resolution of 1600× 1200px (pixel size approx. 3.88µm) and

an initial focal length of 6mm (from Exif-information). During the �ight above the housing devel-

opment area, 287 images are taken with a Canon PowerShot S110, at a resolution of 720 × 540px

(pixel size approx. 10.28µm) and an initial focal length of 5mm (from Exif-information). Exemplary

images of both �ights are shown in Figure 5.4a and 5.4b.

The purpose of these data is to show that the approach is also applicable to images, which were

not taken in a controlled environment. Images from the Internet pose two major challenges to

the algorithm: many di�erent interior orientations that are only approximately known including

highly distorted images and a comparably large number of images. The high number of di�erent

interior orientations hinders a self calibration during bundle adjustment, leading to a comparably

low geometric accuracy. Images taken from a UAV become more and more important in the scope

of reconstruction and mapping applications. The two selected datasets are di�erent regarding the

con�guration of images, which shall underline the versatility of the proposed approach.

Selection of thresholds and implementation

In the methodology chapter, a number of thresholds and reference values were presented. Each of

those has a di�erent task, comprising the control of the number of correspondences, necessary for

the computation of a relative orientation (τ|p|), the convergence of the M-estimation (τc{tij ,Rij}
),
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4.2 4.2.1 4.2.2 4.3.2 4.4.2 4.4.3
τ|p| τc{tij ,Rij}

τα τc τ∆r ]pointtracks τr τs

5.2.1 40 0.01 5◦ 1.5 0.001 10 10px 3med
(
slt
)

5.2.2 40 0.01 5◦ 1.5 0.001 10 2px 3med
(
slt
)

5.3.1 40 0.01 5◦ 1.5 0.001 30 2px 3med
(
slt
)

5.3.2 - - 5◦ 1.5 0.001 - - -
5.3.3 - - - - - 30 2px 3med

(
slt
)

5.4.1 20 0.01 5◦ 1.5 0.001 20 10px 3med
(
slt
)

5.4.2 20 0.01 5◦ 1.5 0.001 20 2px 3med
(
slt
)

Table 5.1.: Selection of thresholds for di�erent experiments explained in the following sections.

the inlier/outlier classi�cation of the breadth-propagation (τα), the ratio between consistent and

inconsistent rotation estimates for outlier classi�cation (τc), the convergence of the Lie-algebraic

averaging (τ∆r), the number of point tracks (]pointtracks) and the reprojection error (τr) and scale

consistency (τs) during the estimation of global translations. Table 5.1 gives an overview over these

seven thresholds, where they are de�ned and which values have been selected for the individual

experiments that are investigated in the following sections.

The method proposed in this thesis is based on self-implementedMatlab code. For the computation

of the essential matrix, the toolbox of Stewenius et al. [2006]4 is used. The random sampling

framework for the essential matrix estimation is based on the structure and motion toolkit of Philip

Torr5. The SDP for the rotation estimation is implemented using YALMIP [Löfberg, 2004]6, a

toolbox to parse linear matrix inequality constraints to various convex optimization solvers. As a

solver SDPT3 [Toh et al., 1999], an open SDP-solver for Matlab, is used.

5.2. Synthetic data

In this section, experiments conducted on synthetic data are presented. Because the noise of the

homologous points and the number and magnitude of gross errors can be controlled, these data are

suitable for the evaluation of the accuracy (5.2.1) and robustness (5.2.2) of the proposed method.

All results regarding the accuracy are compared to the ground truth information, which is described

in Section 5.1.

5.2.1. Accuracy analysis for varying noise levels

For the evaluation of the accuracy of the proposed global image orientation model, observations are

assumed to be a�ected by di�erent levels of noise. In the given synthetic dataset, object points

are projected into the images and modi�ed by normal distributed noise with σ = t · 0.5px, t =

4available at http://vis.uky.edu/~stewe/FIVEPOINT/.
5http://de.mathworks.com/matlabcentral/fileexchange/4576-structure-and-motion-toolkit-in-matlab.
6available at http://users.isy.liu.se/johanl/yalmip/

http://vis.uky.edu/~stewe/FIVEPOINT/
http://de.mathworks.com/matlabcentral/fileexchange/4576-structure-and-motion-toolkit-in-matlab
http://users.isy.liu.se/johanl/yalmip/
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Figure 5.5.: Accuracy of relative orientations before (blue and yellow bars) and after M-estimation
(green and red bars) considering di�erent noise levels. Blue and green bars correspond
to the left scale, yellow and red bars to the right scale.

[1, 2, . . . , 10]. Then, for each noise level, the standard work�ow (see Figure 4.1) is conducted. The

following results are averaged from �ve individual computations.

E�ect on relative orientations

The uncertainty of the homologous points is propagated to the relative orientations. This is depicted

in Figure 5.5, which shows the average accuracy of the relative rotations and translations for each

noise level. It is further distinguished between relative orientations before (blue and yellow bars) and

after M-estimation (green and red bars). Note that the accuracy of the relative translations is also

given in the angular distance because their Euclidean length is not part of the parameterization. The

angular distance describes the angle between the rotated relative translation direction and the vector

between the two respective images in the ground truth. The improvement through the M-estimation

is signi�cant for both parameter types, but especially distinctive for the relative translations, for

which the accuracy improves up to 70%. The mean accuracy decreases linearly with growing noise

and stays below 2.5◦ angular distance in standard deviation for the relative rotations and up to

10◦ in standard deviation for the relative translations. This gives evidence that, in general, the

estimation of relative rotations is more accurate than the estimation of relative translations.

With increasing noise level, the number of estimated relative orientations and their average number

of correspondences also reduce by around 40% and almost 75%, respectively (see Figure 5.6). Besides

the increasing noise of the observations, the decreasing number of correspondences contributes to

the decreasing quality of the relative orientations.
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Figure 5.6.: Number of estimated relative orientations and the average number of correspondences
per orientation.
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Figure 5.7.: Accuracy of global orientations with respect to ground truth for di�erent noise levels
before and after bundle adjustment. Blue and green bars correspond to the left scale,
yellow and red bars to the right.

E�ect on global orientations

The impact of di�erent noise levels on the quality of the estimated global orientation parameters

with respect to the ground truth is depicted in Figure 5.7. As expected, increasing noise negatively

a�ects the accuracy of the global orientation. Rotations before bundle adjustment (blue bars) can

be estimated up to 1◦ accuracy in standard deviation for a noise up to 4px (except for the value at

3.5px). The accuracy of the translations (yellow bars) is below 10 cm for 0.5px noise and increases

to approximately 1.2m in standard deviation for high noise levels. For both types of parameters,

rotations and translations, a �nal bundle adjustment has a signi�cant positive e�ect on the accuracy

(green and red bars). In order to show the spatial distribution of the accuracy, Figures 5.8a and 5.8b

demonstrate the angular and Euclidean distances of every single image, respectively. The distances

are given for a noise level of 1px. One can see that the distance to the ground truth depends on the

selection of the starting image, i.e. the datum de�nition (the image in dark blue in the center). To

the outer regions of the scene the distances increase.

It remains to be shown how the uncertainty propagates to the structure. In Figure 5.8c, the
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(a) Deviation of the global rotations R?? given in [◦]
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(b) Deviation of the global translations T ?? given in [m]
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(c) Deviation of the object coordinates given in [m]

Figure 5.8.: Accuracy of the global rotations (5.8a) and translations (5.8b) shown for each image and
the accuracy of the object coordinates (5.8c). All accuracies are measured as angular
and 3D Euclidean distance to ground truth, respectively.

accuracy of the estimated object points with respect to the ground truth is shown. These points are

computed via multi-image pairwise spatial intersection using the estimated global image orientation

parameters R?? and T ??. The average point accuracy is approximately 0.2m in standard deviation.

It re�ects the �ndings for the accuracy of the orientation parameters, i.e. an increasing di�erence

to the ground truth the higher the distance to the starting image. After bundle adjustment, the

average accuracy increases by a factor of 5 to approximately 0.04m in standard deviation.

Dependency between global rotations and translations

The comparison of the accuracy of the relative and the global rotations leads to the conclusion that

the quality of the rotations after di�erent stages of the proposed method varies. This is shown in the

following based on the three sets of global rotations, R, R? and R??. Because global translations

depend on the quality of the estimated global rotations, the following experiment shall expose the
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Figure 5.9.: Accuracy of global translations using di�erent global rotations as initialization.

in�uence rotations have on the accuracy of the translations. Global translations are estimated based

on global rotations after breadth-propagation R, SDP estimation R? and after SDP estimation and

Lie algebraic averaging R??. The di�erences to ground truth are visualized in Figure 5.9. Note

that the translation accuracy using R?? (blue bars) is also depicted in Figure 5.7 and is shown

again for an enhanced comparison. As expected, global translations are estimated most accurately

using R??. Except for the case of 5px noise, the di�erences, however, are small. An important

result of this experiment is that for a low noise level, i.e. 0.5px, rotations after SDP (green bars)

lead to inferior translations than using rotations after breadth-propagation (yellow bars). This was

the case in all �ve individual computations. One reason for this might be a comparably accurate

propagation R, because of the small size and high density of the view-graph given such a low

noise level. Another reason might be that the semide�nite constraints in (4.21) are too loose. In

order to have further evidence for these propositions, an experiment was conducted with zero noise.

Translations, estimated using R and R??, are exact, whereas translations using R? have an average

uncertainty of approximately one centimeter, which supports the given reasons. For higher noise

levels, translations are often estimated more accurately using rotations after SDP-estimation. This

leads to the consequence that the larger the image set, the less dense the view-graph and the lower

the expected accuracy of the observed image coordinates the larger might be the bene�t of an

intermediate SDP-estimation. The �nding is taken up again in Sections 5.3.1 and 5.3.2.

In Section 4.3.1 it was mentioned that one can think of solving the problem with a reduced

set of semide�nite constraints in order to reduce the computation time and the applicability to

larger datasets. In order to show how this a�ects the outcome, rotations have been estimated in

an SDP, applying the convex hull constraint only to those submatrices in M, for which also the

respective relative rotation in M0 is available. In this experiment, the number of constraints is

reduced from 1226 to 471. The estimated rotations are equivalent to the ones computed using the

full set of constraints, whereas the computation time reduces by approximately 12%. Thus, the

reduced problem can be used in practice for the estimation of rotations, although the computation

time reduces only slightly.
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Figure 5.10.: Robustness of the breadth-propagation compared to two state-of-the-art approaches,
[Chatterjee & Govindu, 2013], shown as angular distance of global rotations R??

i with
respect to ground truth.

5.2.2. Robustness analysis for varying outlier rates

In this section, the in�uence of outliers in the image coordinates of the homologous points as well as

the relative orientations on the estimated global orientation parameters is analyzed. The homologous

points are assumed to be a�ected by a normally distributed noise with a standard deviation of 0.5px,

leading to a set of noisy relative orientations.

Outliers in the relative rotations

In this experiment, outliers in the relative rotations are generated in order to check the detection

ability of the breadth-propagation. An outlier is generated by a multiplication with a random

rotation matrix. The random rotation is required to have Euler angles in the interval {ω, φ, κ} =
[15◦, 345◦] in order to have a signi�cant e�ect on the estimated relative rotations. These outliers,

simulating modi�ed relative rotations, are selected randomly in a equally distributed fashion based

on a speci�c outlier rate. Outlier rates are de�ned lying between 5% and 60%. For every such outlier

rate, 100 individual repetitions are conducted, in which the random selection is repeated, so that

the average result is independent of the con�guration of inliers and outliers.

For a qualitative assessment, the robustness of the proposed method is compared to a state-of-the-

art approach. A model often used in recent approaches for the robust estimation of global rotations

(e.g. [Wilson & Snavely, 2014; Ozyesil & Singer, 2015; Cui et al., 2015]) is the e�cient L1RA (L1

rotation averaging) and L1-IRLS (L1 iterative reweighted least squares) approach of Chatterjee &

Govindu [2013]. The source code of this model is made available by the authors. As initialization,

all three models, breadth-propagation, L1RA and L1-IRLS, have the same relative rotations. In

order to qualify the detection results, the angular distance to the ground truth global rotations is

computed. Note that after breadth-propagation the SDP and Lie algebraic averaging are performed.
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Results are depicted in Figure 5.10; note the logarithmic scale of the y-axis. Up to 40% of outliers,

breadth-propagation (blue bars) �nds all outliers, which leads to accurate global rotations R??
i ,

comparable to the results for the respective noise level shown in Figure 5.7. At 45% outliers, in

one out of 100 trials, not all outliers have been removed, which a�ects the average angular distance

considerably so that the average angular distance increases by a few degree. L1RA and L1-IRLS

lead to inferior results, also at lower outlier rates, which is due to the subsequent rotation estimation

as opposed to the outlier detection. Considering L1-IRLS, the accuracy is not a�ected by outliers up

to 25% outlier rate, which gives evidence that all outliers were detected for these rates. From 30%

on, the estimation quality quickly decreases, which indicates that the breakdown point of L1-IRLS

lies at around 30% outliers. For a mathematical de�nition of the breakdown point the reader is

referred to Hampel et al. [2011]. At high outlier rates large errors are produced using L1RA and

L1-IRLS whereas the average angular distance using the proposed method is in the range of a few

degree even at 60% outlier rate. Thus, the constraints implemented in the breadth-propagation have

the ability to �lter defective relative rotations until a high breakdown point of approximately 50%

outliers.

For the sake of robustness, this experiment has been conducted additionally with random rotations

having Euler angles in the interval {ω, φ, κ} = [5◦, 355◦], i.e. outliers may correspond only to a small

random rotation by 5◦. A graphical presentation of these results is omitted, because they are almost

equivalent to the ones shown in Figure 5.10.

The experiment described in the previous paragraph only applies to equally distributed outliers.

In practice, it may happen that two or more outliers lead to a consistent solution. As is mentioned

in Section 5.4.1, breadth-propagation is not necessarily able to cope with these circumstances. An

example for the consequences will be shown in Section 5.4.1.

Outliers in the homologous points

In a second experiment, outliers are generated in the image coordinates of the homologous points.

The experiment is conducted twice by modifying the image coordinates with a random value so that

its distance to the original coordinate is at least 50px and 10px using the Euclidean norm. The rate

of outliers is varied between 2% and 20% and, for each outlier rate, �ve individual computations

were conducted, of which the average value is taken. It is examined how outliers in�uence the

estimation of relative orientations and global translations and how well the detection as presented in

Section 4.4.3 performs. Note that the estimation of global rotations is not investigated at this point,

because it is not directly a�ected by outliers in the image coordinates of homologous points. The

thresholds for the reprojection error τr and the triplet consistency τs are set to 2px and med
(
slt
)
,

respectively (see also Table 5.1), which means that, if the tripletwise standard deviation is higher

than three times the median of the vector slt, the constraint is rejected. In Figure 5.11, the average

detection rate of outliers during the estimation of global translations is depicted (blue and green

bars). The detection rate appears to be independent of the outlier rate and varies between 99% and
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Figure 5.11.: Detection of outliers in the homologous points (blue and green bars, left scale) and
e�ect on the accuracy of global translations (yellow and red bars, right scale).

100% for large outliers (larger than 50px) and 89% and 98% for small outliers (larger than 10px).

Additionally, the accuracy of the estimated global translations with respect to the ground truth is

shown (yellow and red bars). This accuracy does not depend on the size of the outliers, implying

that although less outliers are detected in case of small outliers, the remaining ones do not have

a signi�cant e�ect on the result. The detection rate would increase if stricter values for the two

thresholds τr and τs were selected. However, this in general involves a higher false positive rate

(inliers that are classi�ed as outliers), which is why the selection of optimal thresholds is a delicate

task and remains for future work.

One can see that there is a slight trend showing an increasing Euclidean distance with increasing

outlier rate for both types of outliers. A reason for this is that, with increasing number of outliers

in the homologous points, less constraints for the global translations are computed, because the

respective observations are eliminated. This trend is also ascribed to the declining quality of the

relative orientations, which can be seen in Figure 5.12. Although outliers are eliminated within

RANSAC and subsequent M-estimation, less correspondences remain to estimate the relative ori-

entations, which has a negative e�ect on their accuracy. Moreover, the relative orientations with

outliers of at least 10px are slightly less accurate, which indicates that not all outliers have been

eliminated by RANSAC and M-estimation. Again, this would require a more careful parameter

selection regarding RANSAC and τc{tij ,Rij}
.

The random design of the outlier generation only by coincidence leads to a con�guration where the

outlier lies in the same epipolar plane as the original observation, considering neighboring images.

Thus, almost all outliers have been detected via the reprojection constraint (4.44). An analysis, also

for outliers ful�lling the epipolar constraint, will be addressed in Section 5.3.3.
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Figure 5.12.: E�ect of the outlier rate on the accuracy of the relative orientations.

5.3. Benchmark data

The previous section was dedicated to the analysis of synthetic data. The general behavior of the

proposed approach given di�erent noise levels and outlier rates was studied. In this section, experi-

ments using benchmark data are presented. For these data many qualitative analyses were conducted

in related work. In order to conduct a comprehensive comparison, two di�erent evaluations are per-

formed. The �rst one comprises approximate interior orientation from Exif-information. Thus, the

focal length is extracted from the Exif-information and the principal point is assumed to lie in the

center of the image. In the second evaluation, calibrated values are used for the interior orienta-

tion. This di�erentiation, on the one hand, is reasonable because both con�gurations are studied

in related work. On the other hand, it reveals information about the in�uence of di�erent interior

orientation parameters on the estimated exterior orientations. Additionally, results for the global

orientations are shown after a self calibration using the interior orientation from Exif-information

as initialization.

In Section 5.3.1 a comparative analysis of the accuracy is presented using various related pub-

lications. This is followed by a convergence study of the Lie algebraic averaging in Section 5.3.2.

Finally, the outlier elimination during translation estimation is investigated again in Section 5.3.3,

giving new insights about outliers inside the epipolar plane and sharpness of discrimination.

5.3.1. Comparative accuracy analysis

Figures 5.13, 5.14 and 5.15 show the reconstruction results of fountain-P11, Herz-Jesu-P25 and

castle-P30. The reconstruction of castle-P19 is neglected here because it is the same scene as

for castle-P30. The top rows show the reconstructions before, the bottom rows the results after

the �nal bundle adjustment7. In the right columns, in order to better show the planarity of the

reconstructed scenes, the results are shown in an orthographic projection. All results are obtained

using approximate interior orientation from Exif-information. In general, it is hard to see any

di�erences. By comparing 5.13b with 5.13d, 5.14b with 5.14d and 5.15b with 5.15d, one can see

7The full model (BP-SDP-Lie and TE-Rob) has been used, see next paragraph for more details
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(a) before BA (b) before BA

(c) after BA (d) after BA

Figure 5.13.: Reconstruction of the fountain-P11 dataset (see Figure 5.2a), before and after bundle
adjustment (BA).

(a) before BA (b) before BA

(c) after BA (d) after BA

Figure 5.14.: Reconstruction of the Herz-Jesu-P25 dataset (see Figure 5.2b), before and after bundle
adjustment (BA).



104 5. Experiments

(a) before BA (b) before BA

(c) after BA (d) after BA

Figure 5.15.: Reconstruction of the castle-P30 dataset (see Figure 5.2c), before and after bundle
adjustment (BA).

that, before bundle adjustment, the point clouds are less planar. Regarding the location and rotation

of the images, no di�erences before and after bundle adjustment are visible.

Comparison of di�erent model instances and to the state-of-the-art

In a �rst analysis, di�erences before and after bundle adjustment are unveiled via a numerical

analysis regarding ground truth information. In this analysis, di�erent instances of the proposed

model are compared in order to qualify the contribution of each single step to the overall result.

Regarding rotations, these instances are:

• BP-SDP: Rotations after breadth-propagation and SDP estimation (R?).

• BP-Lie: Rotations after breadth-propagation and Lie algebraic averaging. SDP estimation

has not been performed.

• BP-SDP-Lie: Rotations after breadth-propagation, SDP estimation and Lie algebraic averag-

ing (R??).

• BP-SDP-Lie-I: Rotations after breadth-propagation, SDP estimation and Lie algebraic aver-

aging using W∆r = I.

Translations are estimated based on R??, but it is distinguished between a robust and a non-robust

version:

• TE: Translations without considering outliers.

• TE-Rob: Translations including outlier elimination as described in Section 4.4.3 (T ??).
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fountain-P11 Herz-Jesu-P25 castle-P19 castle-P30
b
ef
or
e
B
A

BP-SDP (R?) 0.28 0.48 1.36 1.20
BP-Lie 0.25 0.21 0.65 0.58
BP-SDP-Lie (R??) 0.25 0.21 0.65 0.58
BP-SDP-Lie-I 0.25 0.21 0.68 0.57
L1-IRLS [1] 0.29 0.27 1.35 0.72
[2] 0.52 0.57 - 1.65
DSE(BA3) [3] 0.45 0.39 - 0.96

af
te
r
B
A R

BA-SC 0.03 0.02 0.08 0.04
RBA 0.16 0.09 0.43 0.30
[2] 0.20 0.19 - 0.48
spct/SDP [4] 0.42 0.35 - -

Table 5.2.: Mean angular distance of di�erent versions of the proposed model before and after bundle
adjustment (BA) using Exif-information for the interior orientation. Results are com-
pared to the robust L1-IRLS model of Chatterjee & Govindu [2013] [1], the global method
in Jiang et al. [2013] [2], the DSE(BA3) in Jiang et al. [2015] [3] and the spectral/SDP
method in Arie-Nachimson et al. [2012] [4]. Results of [2], [3] and [4] are taken from the
respective publications. Note that no results for castle-P19 are provided in [2], [3] and
[4] and additionally no results for castle-P30 in [4]. All values are given in [◦].

Results are presented in Tables 5.2, 5.3, 5.4 and 5.5. The �rst two tables contain the angular and

metric distances to the ground truth using Exif-information as interior orientation of the cameras.

The latter two show these di�erences regarding calibrated interior orientation. Note that in the

�rst case, bundle adjustment is performed twice, once including self calibration, i.e. an estimation

of the interior orientation parameters (RBA-SC and T BA-SC), and once �xing the values from

the Exif-information (RBA and T BA). Bundle adjustment with interior orientation from actual

calibration data is performed without self calibration, only.

The accuracies of the proposed method are compared to various state-of-the-art approaches. With

exception of the L1-IRLS-method of Chatterjee & Govindu [2013] that is performed on the equi-

valent set of relative orientations as the proposed method, all values are taken from the respective

publications as explained in the captions of the tables. Regarding the results after bundle adjust-

ment, it often is not known, whether the interior orientation is also estimated or not. According

to a discussion with Zhaopeng Cui and Nianjuan Jiang, authors of Jiang et al. [2013], Cui et al.

[2015] and Jiang et al. [2015], a self calibration is performed when Exif information is used. From

VisualSFM it is known that a self calibration is performed, as well. Another factor in�uencing the

results is the estimation of additional distortion coe�cients (e.g. tangential distortion), which were

not considered in the proposed method.

The angular distances in Table 5.2 reveal that, as soon as the Lie algebraic averaging is performed,

the results lie very close together. This especially counts for fountain-P11 and Herz-Jesu-P25, which

have a comparably simpler geometry. The improvement from BP-SDP to all other instances, in which

Lie-algebraic averaging is performed, is signi�cant. Using initial rotations from the SDP does not
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fountain-P11 Herz-Jesu-P25 castle-P19 castle-P30

b
ef
or
e
B
A TE 0.038 0.109 0.447 0.980

TE-Rob (T ??) 0.035 0.083 0.428 0.950
[2] 0.053 0.106 - 1.158
DSE(BA3) [3] 0.072 0.061 - 1.620

af
te
r
B
A

T BA-SC 0.007 0.013 0.081 0.044
T BA 0.049 0.030 0.685 0.443
[2] 0.014 0.064 - 0.235
DSE(BA3) [3] 0.011 0.056 - 0.200
spct/SDP [4] 0.027 0.052 - -
L1 [5] 0.007 0.026 - 0.167
1DSfM [6] 0.032 0.065 - -
VisualSFM [7] 0.021 0.045 - 0.190

Table 5.3.: Mean Euclidean distance of two di�erent versions of the proposed model before and after
bundle adjustment (BA) using Exif-information for the interior orientation. Results are
compared to the global method in Jiang et al. [2013] [2] and the DSE(BA3) in Jiang et al.
[2015] [3]. After bundle adjustment there is an additional comparison to Arie-Nachimson
et al. [2012] [4], Cui et al. [2015] [5], Wilson & Snavely [2014] [6] and VisualSFM [Wu,
2013] [7]. Results of [2], [3], [4] and [5] are taken from the respective publications, results
of [6] and [7] are reported in Cui et al. [2015]. Note that no results for castle-P19 are
provided in the compared publications, for castle-P30 no results are provided in in [4]
and [6]. All values are given in [m].

have a positive e�ect, thus it does not matter which rotations, R or R?, are used to initialize the

Lie algebraic averaging, which underlines the �ndings of Section 5.2.1. This issue will be revisited

in Section 5.3.2. For the more complex castle-images, the usage of unit weights instead of weights

derived from covariance information a�ects the rotations but positively as well as negatively.

In comparison to the state-of-the-art methods of Chatterjee & Govindu [2013] (L1-IRLS-method

[1]), Jiang et al. [2013] ([2]), Jiang et al. [2015] (DSE(BA3) [3]) and Arie-Nachimson et al. [2012]

(spct/SDP [4]), before and after bundle adjustment, the proposed model achieves more accurate

results also without performing a self calibration. Except for the L1-IRLS-method ([1]), all results

are taken from the respective publications, thus homologous points and relative orientations are

di�erent and only the images are equivalent.

The translation error in Table 5.3 shows that, except for fountain-P11, the outlier elimination has

an e�ect in the range of a few centimeters. Again, the methods used for comparison consist of the

two models by Jiang et al. [Jiang et al., 2013, 2015] ([2]) and (DSE(BA3) [3]) and Arie-Nachimson

et al. [Arie-Nachimson et al., 2012] (spct/SDP [4]), plus Cui et al. [2015] (L1 [5]), Wilson & Snavely

[2014] (1DSfM [6]) and [Wu, 2013] (VisualSFM [7]). The proposed method achieves comparable and

partly best results before and after bundle adjustment. Without self calibration, the accuracy of

the translations decreases signi�cantly. In case of fountain-P11 and Herz-Jesu-P25 the results of

RBA-SC are in the region of the accuracy of the ground truth itself, which can be gauged looking

at Figure 7 in Strecha et al. [2008]. The castle-P19 dataset has not been processed in any of the
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fountain-P11 Herz-Jesu-P25 castle-P19 castle-P30
b
ef
or
e
B
A

BP-SDP-Lie (R??) 0.02 0.03 0.14 0.24
L1-IRLS [1] 0.02 0.03 0.41 0.39
DSE(BA3) [3] 0.02 0.06 - 0.27
EIG-SE(3)-Iter [8] 0.03 0.06 1.48 0.47
EIG-SE(3)-MCB [8] 0.04 0.06 2.46 0.77
[9] 0.03 0.14 3.69 1.97

af
te
r
B
A

BP-SDP-Lie (R??) 0.02 0.02 0.04 0.03
spct/SDP [4] 0.02 0.05 - -
EIG-SE(3)-Iter [8] 0.04 0.04 0.06 0.05
EIG-SE(3)-MCB [8] 0.03 0.04 0.06 0.05
[9] 0.03 0.04 0.05 0.05

Table 5.4.: Mean angular distance of the proposed model before and after bundle adjustment (BA)
using ground truth information for the interior orientation. Results are compared to the
robust L1-IRLS model of Chatterjee & Govindu [2013] [1], the DSE(BA3) method in
Jiang et al. [2015] [3], the spectral/SDP method in Arie-Nachimson et al. [2012] [4], two
di�erent versions of Arrigoni et al. [2015a] [8] and the model of Ozyesil et al. [2015] [9].
The results of [3], [4] and [8] are taken from the respective publications, the results of [9]
are reported in Arrigoni et al. [2015a]. Note that no results for castle-P19 are provided
in [3] and [4] and additionally no results for castle-P30 in [4]. All values are given in [◦].

publications used for comparison.

The fundamental di�erence when comparing Tables 5.2 and 5.3 with 5.4 and 5.5 is that the ac-

curacy generally improves when using the calibrated interior orientation. In Table 5.4, the angular

distance of only the full model (BP-SDP-Lie) is compared to various state-of-the art models. Re-

garding fountain-P11 and Herz-Jesu-P25, the di�erences are very small, whereas they are more

signi�cant for castle-P19 and castle-P30. In particular, this is meaningful for the comparison with

L1-IRLS [Chatterjee & Govindu, 2013], because the relative orientations are identical so that both

rotation estimations can be compared without distortion. In comparison with the remaining ap-

proaches, especially for castle-P19, the di�erences in the angular distance before bundle adjustment

are large not only to the proposed method but also among themselves. This can be attributed to

the presence of outliers in the relative orientations and their rigorous elimination in the proposed

method. After bundle adjustment all results lie close together.

A similar e�ect is visible regarding global translations (Table 5.5). Before bundle adjustment,

the results partly vary considerably. Except for the approach of Wilson & Snavely [2014] (1DSfM

[6]), the translations of fountain-P11 and Herz-Jesu-P25 are very accurate and in the range of few

mm. Cui et al. [2015] discuss that the approach of Wilson & Snavely [2014] is not suitable for this

sequential type of image data. The translations of the two castle datasets before bundle adjustment

are estimated considerably more accurately with the new approach, which relates to a successful

outlier elimination. After bundle adjustment, all results lie very close together.
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fountain-P11 Herz-Jesu-P25 castle-P19 castle-P30
b
ef
or
e
B
A TE-Rob (T ??) 0.005 0.012 0.242 0.591

DSE(BA3) [3] 0.009 0.012 - 1.040
EIG-SE(3)-Iter [8] 0.236 1.152 4.986 1.974
EIG-SE(3)-MCB [8] 0.008 0.357 3.967 3.866

af
te
r
B
A

TE-Rob (T ??) 0.004 0.009 0.043 0.056
DSE(BA3) [3] 0.003 0.006 - 0.100
spct/SDP [4] 0.005 0.008 - -
L1 [5] 0.003 0.005 - 0.021
1DSfM [6] 0.034 0.036 - -
VisualSFM [7] 0.004 0.006 - 0.071
EIG-SE(3)-Iter [8] 0.003 0.022 0.034 0.035
EIG-SE(3)-MCB [8] 0.003 0.008 0.035 0.034
[10] 0.003 0.005 0.026 0.022

Table 5.5.: Mean Euclidean distance of the proposed model before and after bundle adjustment
(BA) using ground truth information for the interior orientation. Results are compared
to Jiang et al. [2015] [3], Arie-Nachimson et al. [2012] [4], Cui et al. [2015] [5], Wilson
& Snavely [2014] [6], VisualSFM [Wu, 2013] [7], two di�erent versions of Arrigoni et al.
[2015a] [8] and to Moulon et al. [2013] [10]. The results of [3], [4], [5] and [8] are taken
from the respective publications, the results of [6], [7] and [10] are reported in Cui et al.
[2015]. Note that no results for castle-P19 are provided in [3], [4], [5], [6] and [7] and
additionally no results for castle-P30 in [4] and [6]. All values are given in [m].

Tables 5.2-5.5 show the accuracy of the estimated global orientations with respect to ground

truth values. Regarding the precision of the results, i.e. the covariance matrices of the global

orientations after bundle adjustment, all values of the four datasets lie in the same order of magnitude

(approximately ±0.0005◦ for rotations and ±0.8mm for translations in standard deviation).

The accuracy of the global orientations in general depends on many factors like the quality of the

relative orientations, which in turn depends on the homologous points. Because these are selected

randomly, e.g. via RANSAC, the orientation results often vary slightly when computed repeatedly

(approximately ±0.01◦ for rotations and 0.005m for translations). This hampers a sound comparison

to other approaches. Moreover, the bundle adjustment induces additional factors that are hard to

control and compare. Often, in the publications used for comparison, there is little information

about how parameters are treated, e.g. regarding the estimation of interior orientations parameters

or distortion coe�cients or the de�nition of convergence criteria. On the other hand, if one sees

the proposed method as a whole, it can be considered a model for an accurate estimation of global

orientations, whose results are comparable to and partly better than the state-of-the-art. The

comparison with the L1-IRLS method of Chatterjee & Govindu [2013] is more revealing because

identical relative rotations have been used. Constantly, the proposed method performs equally well

or produces more accurate global rotations than L1-IRLS, which agrees with the analysis in Section

5.2.2 using synthetic data.
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(a) I1 before BA (b) I3 before BA

(c) I1 after BA (d) I3 after BA

Figure 5.16.: Residuals in I1 and I3 of fountain-P11 before and after bundle adjustment (BA) en-
larged by factor 20.

Residuals in image space

A second analysis compares the residuals in image space before and after bundle adjustment, i.e.

the pointwise reprojection error. Both, the size of the errors and remaining systematic e�ects can

thus be revealed. A comparison for two images of the fountain-P11 dataset is given in Figure 5.16.

Note that residuals are shown for all observations of points visible in at least three images, most

of these were not used for the estimation of initial translations. Before bundle adjustment, clear

systematic e�ects can be seen for direction and length of the residuals (Figures 5.16a and 5.16b).

In I3 one outlier is also visible. After bundle adjustment the average length of the residual vectors

decreased and the directions appear randomly distributed (Figures 5.16c and 5.16d). The outlier in

I3 has been removed. On the one hand, this evaluation shows that the initial solution derived by the

proposed approach does not lead to a best and unbiased solution, on the other hand it also reveals

that the �nal bundle adjustment is able to solve these issues, which corresponds to the numerical

analysis of the accuracy with respect to ground truth information in the previous part.

5.3.2. Lie algebraic averaging - basin of convergence

In the previous section, the angular distance of di�erent versions of the proposed method was

discussed. An important result was that the accuracy of the global rotations after Lie algebraic
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(a) Herz-Jesu-P25
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(b) castle-P19

Figure 5.17.: Angular distance of R?? for the Herz-Jesu-P25 (5.17a) and castle-P19 dataset (5.17b)
depending on corrupted initial global rotations R (bars).

averaging and before bundle adjustment for all four datasets was insensitive against the type of

initialization, i.e. using global rotations after breadth propagation R or after SDP estimation R?

did not cause any di�erence in the results. The question arises how good the initial global rotations

must be in order for the Lie algebraic averaging to converge to the global optimum. In other words,

what is the basin of convergence of the Lie algebraic averaging? Because the Lie algebraic averaging

problem (4.30) is not convex, the term global optimum in this sense is de�ned as the solution that

is derived with initial rotations after breadth propagation.

In this experiment, an empirical evaluation is performed. All global rotations derived by breadth-

propagation are corrupted by random rotations, similar to the robustness experiment in Section

5.2.2. Random rotations are computed based on random Euler angles, normally distributed with

σ = t · 10◦, t = [1, 2, . . . , 20]. For every t, ten independent repetitions are conducted. The average

angular distance for each global rotation of the Herz-Jesu-P25 dataset is depicted in Figure 5.17a.

Until 130◦ noise level the results are not a�ected and equal to the global optimum. The basin of

convergence is thus surprisingly large, which coincides with the �ndings of Table 5.2, which states

that irrespective of the initial rotations, the Lie algebraic averaging produces equivalent results.

The image con�guration of the Herz-Jesu-P25 dataset is relatively simple. In order to show how

this might in�uence the basin of convergence, the same experiment is conducted on the castle-P19

dataset, which has a circular arrangement of images and, thus, a higher variety in the global rotations.

Results are shown in Figure 5.17b. Small di�erences in the angular distances are already measurable
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Figure 5.18.: Rejected homologous points in the castle-P19 dataset.

at 120◦ noise level, which however is hardly visible in the �gure. In total, the di�erences are higher

than for the Herz-Jesu-P25 dataset, but the basin of convergence is still rather large.

In summary, taking the results of Figure 5.9 into account, this investigation shows that the SDP

estimation can be skipped in most practical cases. The basin of convergence of the Lie algebraic av-

eraging is relatively large, even for more complex image arrangements. Although SDP often provides

a more accurate set of initial global rotations compared to rotations derived by breadth-propagation

(cf. Figure 5.9), this characteristic is compensated by the Lie algebraic averaging. Thus, in the

following experiments, the SDP-estimation is not performed and the term R?? is also used for the

con�guration BP-Lie.

5.3.3. Outlier elimination

In Section 5.3.1, it was shown that the outlier elimination during the estimation of global translations

leads to superior results, especially regarding both castle-datasets. Although the outliers did not
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considerably distort the result compared to the estimation without outlier elimination, there was

a general improvement in the range of a few centimeters. In this section, two exemplary points,

rejected as outliers in the castle-P19 dataset, are studied in more detail.

In total, 224 points have been selected, which form 30 point tracks. Two out of these points were

considered to be outliers, i.e. they have been measured erroneously in at least one image. In Figure

5.18, exemplary matchings for selected image pairs are shown. Figures 5.18a-5.18d show point 3543,

which has inconsistent measurements: in images I2-I8 the point is measured at the top left corner of

the ground �oor window directly left of the entrance. In images I10-I12, this point is measured one

window further to the left. In image space, this is an error of more than 400px. Considering the

geometry of the scene and the con�guration of the images, it becomes clear that the line between the

two window corners, at which point 3543 was measured, is approximately parallel to the plane formed

by the projection centers of all images captured. Therefore, taking any image pair, both window

corners approximately lie in one plane, i.e. are coplanar, which makes the set of homologous points

prone to mismatches, especially considering the repetitive structure at the windows. Consequently,

the outlier has not been detected by the reprojection error after local spatial intersection but by

the triplet scale constraint. Figure 5.19a shows the median standard deviation computed for each

image, considering all respective triplet combinations. For instance, the bar at position 2 shows the

median of all standard deviations in s3543t , which include I2.

As seen from images I10-I12 this standard deviation is considerably higher. The only consistent

triplet, formed by at least one of these images, for which a low standard deviation is computed, is the

triplet {I10, I11, I12}. Any combination with an image out of {I2-I8} results in a signi�cant di�erence

between the individual scales and thus in a higher σsltijk
. Thus, because the image set {I2, . . . , I8} is

larger than {I10, I11, I12}, a decision can be taken about in which images the observation is considered

to be an inlier and in which it is considered to be an outlier. Hence, constraints for the images I2-I8
are kept in the estimation. One could introduce a new point for the image set {I10, I11, I12} but
because the connection between the two sets is lost, the contribution of these additional constraints

is minor.

Point 539 was identi�ed as outlier during spatial intersection. Correct, but inconsistent matches

are shown in Figures 5.18e, 5.18f and 5.18h. The crossing between the two inconsistent measurements

is the wrong matching depicted in Figure 5.18g, i.e. again two sets of images, {I1, I2, I3, I4, I5} and
{I18, I19}, have a di�erent but within themselves correct observation of P539. During pairwise spatial

intersection, any combination of elements from both sets leads to a reprojection error higher than the

threshold τr. The median reprojection error for each image, considering all pairwise combinations

is depicted in Figure 5.19b. For the same reason as for P3543, the median is decisive because of the

di�erent size of the two image sets {I1, . . . , I5} and {I18, I19}. In consequence, not all observations are

rejected but only those in images I18 and I19. It is noteworthy that, when disabling the reprojection

error constraint, this inconsistency would have also been detected by the triplet scale constraint later

on. This redundancy in the outlier detection is an important side e�ect. Omitting the reprojection
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Figure 5.19.: Median standard deviation of s3543t for every corresponding image, computed consider-
ing all respective triplets (5.19a) and median reprojection error for the local pairwise
spatial reconstruction of point P539, considering all pairwise combinations (5.19b).

error constraint, however, is not advisable because computationally it comes almost for free and

the detection of outliers at this early stage saves the computation and evaluation of the triplet

constraints.

5.4. Various types of data

In the experiments shown in the previous sections, the used image sets were small, consisting of

at maximum 30 and 50 images in the benchmark and synthetic data, respectively. The datasets

investigated in this section are signi�cantly larger and shall demonstrate the versatility of the pro-

posed approach. The �rst part of this section addresses datasets from image-hosting websites. In

the second part, self-acquired images from two �ights with a UAV are examined.

5.4.1. Images from image-hosting websites

The images investigated in this section are captured with di�erent camera models and interior

orientations. Initial values for these parameters from Exif-information come together with the

images [Wilson & Snavely, 2014]. Also homologous points are provided and used here in order to

derive information about overlapping images and possible pairwise combinations. It has to be noted

that these homologous points are not free of outliers. Thus, the preliminaries are similar to the

evaluation of the benchmark data reported in Section 5.3 with the di�erence that the homologous

points do not stem from Micmac.

For the estimation of rotations the BP-Lie model is used (cf. Section 5.3.1). Translations are

estimated as in the previous sections (TE-Rob) using slightly higher thresholds (see Table 5.1).

During bundle adjustment, the interior orientation parameters are not estimated and stay �xed.

Figure 5.20 shows exemplary views of the reconstruction results after bundle adjustment. The

focus of this section is not an evaluation of accuracy but to show the applicability to various types
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(a) Alamo

(d) Madrid Metropolis

(b) Ellis Island

(f) Notre Dame de Paris

(c) Gendarmenmarkt

(e) Montreal Notre Dame
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(h) Piazza del Popolo

(k) Vienna Cathedral

(i) Roman Forum

(l) Yorkminster

(g) NYC library

(j) Tower of London

Figure 5.20.: Reconstruction of various image datasets from [Wilson & Snavely, 2014] using the
proposed method.
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|I| |I??| |{t0ij ,R0
ij}| |{R?

ij , t
?
ij}|

Alamo 571 526 72513 59165
Ellis Island 230 216 11213 9638
Madrid Metropolis 366 310 11480 9092
Montreal Notre Dame 459 423 38057 36541
Notre Dame de Paris 553 538 43782 33372
NYC Library 359 256 13064 10962
Piazza del Popolo 327 301 14405 12752
Roman Forum 1062 789 40179 29652
Tower of London 469 395 15527 13409
Vienna Cathedral 864 628 73159 51759
Yorkminster 418 338 17553 13376
Gendarmenmarkt 598 429 8662 7706

Table 5.6.: Important numbers of the results of the images of [Wilson & Snavely, 2014] using the
proposed method.

of data. Because there is no ground truth information, no comparative but only a visual analysis is

made. All reconstructions in Figure 5.20 show a reasonable representation of the respective object

of interest. Some statistical information about these datasets is provided in Table 5.6: The columns

|I| and |I??| give the number of images in the largest connected component and after orientation

estimation ({T ??,R??}, i.e. before bundle adjustment), respectively. In the next two columns the

number of relative orientations before and after breadth-propagation (|{t0ij ,R0
ij}| and |{R?

ij , t
?
ij}|)

are shown. The di�erence of these two columns indicates the number of relative orientations excluded

during breadth propagation.

It can be seen that in all datasets the number of images decreases after applying the proposed

approach, because for some of them no valid translation constraint could be established. While

this is a usual e�ect considering similar evaluations in related works (e.g. [Wilson & Snavely, 2014;

Cui et al., 2015; Cui & Tan, 2015]), it reveals an important drawback of the proposed model. If,

for a subset of images, all points in the given point tracks are considered to be outliers, there is

no opportunity to apply further constraints for the respective images. Therefore, theses images are

excluded from estimation. An extension of the proposed model would capture these cases and try

to �nd additional points to replace those that have been classi�ed as errors. In this way the number

of reconstructed images could be increased.

The number of relative orientations varies between 8662 for the Gendarmenmarkt and more than

70000 for the Alamo and Vienna Cathedral datasets, although the number of images does not re�ect

this large di�erence. The reason is that, in the Gendarmenmarkt scene (Figure 5.20c), the variety

of viewing directions is larger, whereas almost all images in the Alamo and Vienna Cathedral scenes

(Figures 5.20a and 5.20k) point in the same direction.

The Gendarmenmarkt images caused problems in Wilson & Snavely [2014] because the scene is

almost symmetric, i.e. two buildings on opposites sides of a plaza look highly identical, which led
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to wrong reconstructions. A similar e�ect also occurs using the model proposed in this thesis when

changing the starting image. Figure 5.21a shows an erroneous reconstruction using the starting

image pictured in Figure 5.21c. Apparently, regarding pairwise relative orientations, the building on

the right side of this image was identi�ed to be equal to the almost identically looking building on

the opposite side of the plaza, which led to only one reconstructed building. Thus, starting from this

image, leads to an erroneous estimation of global rotations in the very beginning of the sequential

breadth-propagation. A considerable amount of pairwise relative orientations supports these wrong

estimates, hence, the correct relative orientations are considered as outliers. The starting image in

5.21b was used for the correct reconstruction in Figure 5.20c. Thus, the selection of the starting

image does a�ect the �nal image orientation. In order to show, how large the risk for an erroneous

estimation is, a systematic evaluation is conducted, in which every image is used as starting image.

Then the di�erences in the global rotations between each individual estimation and the correct

estimation are checked. Approximately 75% of the images led towards a correct estimation. Because

of its symmetry, this scene is peculiar, a comparable e�ect could not be observed in any of the

remaining image sets.

The reconstructions in Figure 5.20 suggest that the proposed method provides accurate image

orientation parameters so that a bundle adjustment converges to a correct solution. It remains

to actually show the quality of these initial orientations. Figure 5.22 shows a comparison of the

orientation before (5.22a) and after bundle adjustment (5.22b) of the Yorkminster dataset (cf.

Figure 5.20(l)) viewed from above in an orthographic projection. One can see that the �atness

of the object points increases signi�cantly after bundle adjustment, which re�ects the structure of

the pictured church. However, the pattern of the images hardly changes, which stresses the quality

of the image orientations before bundle adjustment. The high scatter of the points before bundle

adjustment can be explained by a rather unfavorable base to distance ratio leading to many glancing

intersections. Moreover, no drift is visible, which would reveal itself e.g. by a bending facade plane.

In summary, the orientation of large image sets, which are considered to be ambitious because

only a rough guess of the interior orientation is available, is possible using the proposed method.

High quality initial parameters for a �nal bundle adjustment are provided. Note that the run time of

the proposed method is not investigated. The implementation is not optimized regarding e�ciency,

which is why a quali�ed run time analysis is not possible.

5.4.2. UAV image sequences

In this section, two image sequences acquired from a UAV are evaluated. As for the benchmark

data, homologous points are computed using Micmac. Reconstruction results of the Leibniztempel

sequence are depicted in Figure 5.23, both before (5.23a) and after bundle adjustment (5.23b).

The challenge of this dataset lies in the high variation of perspectives. Images are taken from all

directions and with varying distance to the object. Both reconstructions look similar, di�erences

can only be seen in some image locations, e.g. those highlighted by the red circles. These can be
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(a) Erroneous reconstruction of Gendarmenmarkt

(b) Correct starting image (c) Problematic starting image

Figure 5.21.: Erroneous reconstruction of Gendarmenmarkt and two starting images that lead to
di�erent results.

(a) (b)

Figure 5.22.: Reconstruction of the Yorkminster dataset before (5.22a) and after bundle adjustment
(5.22b).
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(a) before BA (b) after BA

Figure 5.23.: Reconstruction of the Leibniztempel dataset (see Figure 5.4a) before and after bundle
adjustment (BA).

(a) (b)

Figure 5.24.: Reconstruction of the Wettbergen dataset (see Figure 5.4b).

considered small, moreover, they do not have a visible e�ect on the reconstruction results.

In Figure 5.24, the reconstruction of the second UAV-images, the �ight above the housing area

in Wettbergen is shown. As for the Leibniztempel sequence, the reconstruction looks as expected.

This time, only the results after bundle adjustment are depicted from two di�erent perspectives

because no di�erences can be grasped by visual inspection of individual reconstructions. Therefore,

a direct comparison between both orientation estimations is provided in Figure 5.25a, which shows

the estimated camera locations before (black) and after bundle adjustment (red). The starting image

is highlighted by a red circle. It can be seen that the di�erence between both estimations is largest

on the left side and smallest close to the center of the view.

A visualization of the di�erences separately for rotations and translations before and after bundle

adjustment is provided in Figures 5.25b and 5.25c, respectively. These patterns are similar and

support the plotted camera locations in Figure 5.25a. The maximal distances are approximately

4.2m and 1.6◦. The distribution of the di�erences is as expected, because the largest corrections

occur generally at the borders of the scene. At these regions the number of overlapping images is

smaller than in the central part. Taking the density of homologous points into account, which is

visible in Figure 5.24, it becomes clearer, why the distances are larger on the left side. The point
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(a) Cameras before and after BA

(b) Angular distances

(c) Euclidean distances

Figure 5.25.: Camera location of the Wettbergen dataset before (black) and after bundle adjust-
ment (BA) (red) (5.25a), distribution of angular distances, varying between 0 and 1.6◦

(5.25b) and distribution of Euclidean distances, varying between 0 and 4.2m (5.25c).

density is considerably sparser at the bottom left corner of Figure 5.25. Another reason is the

selection of the starting image, which is situated in the right third.

These two datasets stand for a variety of di�erent aerial but also terrestrial image sets, which are

taken in a similar manner. Solving the two UAV-datasets did not pose any problems to the proposed

model.

5.5. Synthesis - experiments

In this section, the most noticeable �ndings of the conducted experiments, selected by each step of

the work�ow, are summarized.
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Preprocessing

Regarding the preprocessing, the M-estimation of relative orientations has a signi�cant positive e�ect

on the accuracy. Especially relative translations bene�t from an up 70% higher accuracy regarding

their standard deviation. This, of course, re�ects on the quality of the global orientation parameters.

The e�ectiveness of the breadth-propagation was proven on synthetic data. It was shown to be more

robust than the current state-of-the-art rotation estimation algorithm of Chatterjee & Govindu

[2013]. Up to 50% of outliers are tolerated until the quality of the rotations decreases signi�cantly.

The global rotations stemming from the propagation are su�cient to serve as initialization for

the nonconvex Lie algebraic rotation averaging. Another important �nding is that the selection

of a starting image for the breadth-propagation may have a crucial e�ect on the resulting image

orientations.

Estimation of rotations

The most important �nding concerning the estimation of global rotations is that it produces highest

accuracy compared to several state-of-the-art methods. Based on benchmark data, four di�erent

versions of the proposed algorithm are compared. The Lie algebraic averaging has the largest

positive e�ect on the results. It could not be proven that a weighting using the covariance matrices

of the relative rotations leads to a superior result, but the statistical cost is smaller. In general, the

estimated rotations are of very high quality, which is shown by a comparison to the state-of-the-art.

Another major �nding concerns the basin of convergence of the Lie algebraic averaging. It has been

shown that the result to a large extend does not depend on the initial global rotations, which, in

principle, allows the usage of rotations after breadth-propagation and makes the SDP unnecessary

in practice.

Estimation of translations

The estimation of translations is highly supported by the new outlier detection and elimination. It

was shown on real images that the imposed criteria allow a sharp discrimination between inliers

and outliers. This also counts for outliers that coincide with the pairwise epipolar geometry. The

accuracy before bundle adjustment compared to ground truth constitutes the state-of-the-art. One

drawback is the selection of point tracks before the detection of outliers. It may happen that for

some images no constraints are established after outlier elimination or that the overlapping criterion

is not ful�lled anymore, leading to a set of images, for which a translation estimation is impossible.

Overall global image orientation model

In summary, the proposed method produces very accurate results on all investigated datasets. It

does not achieve the same level of precision and accuracy that is derived with a bundle adjustment
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but it provides accurate initialization. The better this initialization the faster the bundle adjustment

converges and the lower the risk that it is caught in a local optimum. This behavior has been shown

on a variety of di�erent data, including synthetic data, benchmark sequences and more ambitious

image sets from image-hosting websites and UAV �ights.
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6. Conclusions and outlook

This chapter concludes this thesis. The main objective is revisited and set into context to the

proposed model and the results of its evaluation. Moreover, important challenges for future research

are outlined.

The main objective of this thesis was to present a novel global image orientation approach that

achieves accurate orientation parameters, is robust against outliers in relative orientations and ho-

mologous points and is applicable to various types of data. This objective was approached by combin-

ing several individual optimizations regarding the estimation of relative orientations, global rotations

and translations. During each of these steps, outliers in the homologous points and relative orien-

tations are detected and eliminated. Prior information about relative orientations is encoded as

covariance matrices and used for a weighting in the estimation of global orientations.

The preprocessing serves the computation of an accurate foundation of relative orientations. It

was shown that the M-estimation has a signi�cant positive e�ect on their accuracy and that further

outliers in the homologous points can be found. The new breadth-propagation algorithm showed to

be highly e�ective and allows high outlier rates in the relative rotations. It provides a higher ro-

bustness than the comparable state-of-the-art rotation averaging algorithm of Chatterjee & Govindu

[2013].

The estimation of rotations was designed to combine a convex SDP [Saunderson et al., 2014] and

a subsequent iterative Lie algebraic averaging [Govindu, 2004]. It could be shown that the basin

of convergence of the Lie algebraic averaging is in general relatively large, which allows to skip the

SDP. The estimated global rotations showed to be of high accuracy, both using synthetic data and

real images, with the angular accuracy being often better than using any other method that served

for a comparison.

The estimation of translations builds on the linear method of Cui et al. [2015] and is extended by

an e�ective two-step outlier detection and elimination. Suitable point tracks are selected, not only

based on their length, but also on ful�lling a sensible distribution in image space. Outliers in the

homologous points, whereas coinciding with the epipolar plane or not, are detected reliably, which

allows an e�cient L2 estimation of global translation parameters.

Global image orientation models in general have the ability to overcome the heuristic and ine�cient

nature of a sequential estimation of initial image orientation parameters. Only a few thresholds

have to be de�ned in order to control the estimation. In this work, these thresholds are set without

considering a more in depth analysis on their in�uence. Future research could deal with this issue
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and try to learn optimal values that meet the average image data. For thresholds like the minimal

number of correspondences for the estimation of a relative orientation or the number of point tracks,

this learning might be cumbersome. A decision for a minimal number of correspondences leads

to a compromise between a smaller number of reliable relative orientations and a larger number

of perhaps less reliable relative orientations. For the number of point tracks, a higher number

ensures a higher redundancy and thus statistically superior results but also a�ects the e�ciency.

Consequently, a selection of these parameters also depends on the computational resources and the

desired outcome.

The main bene�t of global image orientation approaches might at the same time become a major

drawback: its one for all and all for one strategy. For instance, if the linear constraints during the

estimation of global translations contain an outlier or lead to a singular matrix of linear constraints,

e.g. due to a violated overlapping criterion, the estimated translations of all images su�er. Thus,

it is crucial that, before each optimization problem is solved, those issues are taken care of. In

the case of global rotations, this is achieved by breadth-propagation, which guarantees a set of

consistent relative rotations. In case of global translations, the overlapping criterion of the point

tracks and the outlier detection using pairwise spatial intersection and triplet scale constraints serve

the constitution of valid constraints. However, the scheme of the proposed approach in this regard is

error prone: Because outliers are detected and eliminated after point tracks have been selected, the

coverage of images by overlapping point tracks might be questioned. This issue requires a subsequent

evaluation of the imposed constraints, which eventually leads to a rejection of image subsets from

estimation. A strategy to approach this problem consists in unifying the point track selection and

outlier detection, so that compensating points are selected adaptively, if an erroneous observation

was detected. In this way an outlier-free set of constraints respecting the overlapping requirement

can be established. An e�ective implementation of this strategy remains for future research.

While an adaptive selection of points would allow for some images to remain available for the esti-

mation of global translations, the system of linear equations might become large for well connected

view-graphs, if all
(n

Pl

3

)
triplet combinations are considered. Although the system of linear equa-

tions is sparse, which allows an e�cient decomposition, for large image sets, it is sometimes useful

to reduce the number of constraints. One way of doing this is to compute a minimum spanning

tree for the corresponding sub-view-graph of every point in every point track and only take triplets

from all pairwise combinations of edges. For the computation of the MST the covariance matrices

of the relative translations could be used. This would reduce the number of triplet combinations to

at least nPl − 2 and at maximum (nPl (nPl − 1)) /2, which is considerably smaller than
(n

Pl

3

)
. The

question how this reduction a�ects the estimation quality, in particular in the presence of outliers,

is open for future research.

Another important issue was shown for the Gendarmenmarkt dataset. Although the selected

starting image led to a correct result, a discrimination of a suitable starting image based on the

minimal maximal distance in the view-graph often lacks sharpness. Thus, given the fact that the

starting image may have a tremendous e�ect on the result and that a decision between possible



125

candidates is rarely unique, the reliability of the proposed method is questionable. This could be

highly improved by performing a sequence of individual breadth-propagations each using a di�erent

starting image. Because these do not depend on each other, this procedure can be parallelized and

only leads to a minor additional computational e�ort. The individual sets of global rotations can

then be averaged and situations, in which breadth-propagation leads to a considerably di�erent

result, can be identi�ed.

Besides these important extensions, there are several additional possibilities to further enhance the

estimation quality. For instance, breadth-propagation could also be assisted by using the covariance

information of the relative rotations. If a clear decision cannot be taken, the individual covariance

matrices could be consulted to infer a statistically more promising solution. In order to diminish

the number of erroneous relative orientations, a linear estimation of the trifocal tensor could be

considered [Ressl, 2000]. A derivation of pairwise relative orientations from the trifocal tensor in

general is more robust. Moreover, various triplet combinations could be considered in order to derive

several individual estimations of each pairwise relative orientation, which could then be averaged.

This higher robustness come at the price of higher computational demand. Given the high robustness

of the breadth-propagation, the actual bene�t has to be evaluated.

In summary, the main objective of this thesis is met successfully. The results of the proposed

global image orientation method provide a sound basis for a �nal bundle adjustment, delivering

optimal parameters. Therefore, this method is a useful tool for the orientation of various types of

images or image sequences. In order to enhance the estimation of translations, the two-step point

track computation and outlier detection is to be replaced by a uni�ed version that covers violated

overlapping criteria and failures due to outliers. The dependency on the starting image can be

covered by a parallel evaluation of multiple view-graphs so that the risk of degenerate solutions

is minimized. Finally, attention should be focused on the estimation of suitable thresholds, which

apply to the most common image sets.
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Appendices

A. Convex relaxation of SO(3)

In Section 4.3.1, a convex optimization problem was formulated to estimate global rotations from

relative estimates. It is based on a parameterization of the convex hull of the rotation manifold

SO(3) as an LMI, which is derived in this appendix. The derivation is based on Horowitz et al.

[2014] and Sanyal et al. [2011].

A common representation of rotations is given by unit quaternions q, as described in Section 2.1.3.

The mapping function between rotation matrices and quaternions is de�ned in (2.11). Written in

the elements of the quaternions, this mapping is given by:

R =


s2 + v2x − v2y − v2z 2vxvy − 2svz 2vxvz + 2svy

2vyvx + 2svz s2 − v2x + v2y − v2z 2vyvz − 2svx

2vxvz − 2svy 2vyvz + 2svx s2 − v2x − v2y + v2z

 . (A.1)

Using the Gramian matrix

Q = qqT =


s2 svx svy svz

vxs v2x vxvy vxvz

vys vyvx v2y vyvz

vzs vzvx vzvy v2z

 , (A.2)

(A.1) changes to:

R =


Q11 +Q22 −Q33 −Q44 2Q23 − 2Q14 2Q13 + 2Q24

2Q23 + 2Q14 Q11 −Q22 +Q33 −Q44 2Q34 − 2Q12

2Q24 − 2Q13 2Q12 + 2Q34 Q11 −Q22 −Q33 +Q44

 . (A.3)

Matrix Q is positive semide�nite and of rank 1, because it is a Gramian matrix, and has a trace of

1, because it is composed of unit quaternions. Thus, any rotation in SO(3) can be written in terms

of the matrix Q. The parameterization of SO(3) given in (A.3) is known as the Cayley transform.

According to Sanyal et al. [2011], this linear map R4×4 → R3×3 commutes with taking the convex

hull.
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The symmetric matrices Q ∈ R4×4 with trace equal to one form a nine-dimensional a�ne space.

Because of the symmetry, Q only has ten distinct elements, the trace constraint reduces the number

of degrees of freedom by one. This nine-dimensional space is isomorphic to the space R3×3 under

the linear map in (A.3).

By implication, if one writes the matrix Q by elements of R, the formulation of the convex

hull in Section 4.3.1 is derived. The reason for doing this reveals itself by taking the geometrical

interpretation into account. Matrix Q is formed by a multiplication of unit quaternions, thus vectors

in R4 of length one, which form the unit sphere S3 ⊂ R4. Recalling the derivation in Section 4.3.1,

the convex hull of SO(2) is built by a relaxation of S1, including all values inside the unit disk. In

a similar fashion, the convex hull of SO(3) is derived. First, a set of linear equations is constructed

from (A.3):

R11 = Q11 +Q22 −Q33 −Q44

R12 = 2Q23 − 2Q14

R13 = 2Q13 + 2Q24

. . .

R33 = Q11 −Q22 −Q33 +Q44. (A.4)

It comprises nine equations (one for each element in R) and the ten unknowns {Q11, . . . Q44},
counting only the upper triangular part. Using the constraint that Q11 +Q22 +Q33 +Q44 = 1, the

system becomes determinable. Now, matrix Q is written in terms of elements of R, dropping the

trace constraint and only requiring the matrix to be positive semide�nite, and the formulation of

(4.20) is derived:
1 +R11 +R22 +R33 R32 −R23 R13 −R31 R21 −R12

R32 −R23 1 +R11 −R22 −R33 R21 +R12 R13 +R31

R13 −R31 R21 +R12 1−R11 +R22 −R33 R32 +R23

R21 −R12 R13 +R31 R32 +R23 1−R11 −R22 +R33

 � 0.

(A.5)

B. Single rotation averaging

The goal of single rotation averaging is to �nd a rotation R̄ that is closest to an arbitrary number

of noisy rotation estimates in the set R with respect to some norm. This comprises computing the

mean in the rotation manifold SO(3) (cf. Section 2.2). The optimization problem is formulated
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using the angular distance function (cf. Section 2.1.4).

minimize d
(
R̄
)
=

|R|∑
i=1

dα
(
RT

i R̄
)p

(B.1)

subject to R̄ ∈ SO(3).

Using the logarithm and exponential map, this Lp-mean can be iteratively estimated in the tangent

space and projected back to SO(3) as proposed in Hartley et al. [2011, 2013]. In Reich & Heipke

[2014], an extension is presented to compute a robust Huber-cost average [Huber et al., 1964]. In

the course of this thesis a robust single rotation averaging is not necessary since, at any time, only

two rotation estimates are averaged, which are weighted based on the covariance matrix of the

relative rotations. A pseudo code for the averaging algorithm is shown in algorithm 1 for the case

of quaternions.

Algorithm 1 Single rotation averaging

1: initialization: q̄ = qi, weights w, Ω = 1, ε = 1e−5

2: while Ω > ε do
3: compute conjugate mean q̄c

4: multiply with conjugate mean qc
i = q̄c ∗ qi

5: get angular part qα
i = qc

i (2 : 4)
6: compute weighted mean q̄α = 1/|R|

∑
wiq

α
i

7: compute update q̄ = q̄ ∗ [‖q̄α‖; q̄α]
8: Ω =

(
q̄α,T q̄α

)
/|R|

This algorithm can be easily adapted to meet an M-estimator. In this case the weights w are

computed in every iteration based on the distance between the mean and the respective rotation

estimate. Note that steps 5 and 7 of algorithm 1 comprise the analogues of the logarithm and

exponential maps, respectively.

C. Linearization of SO(3)

In Section 2.2.1, it is shown that the mappings between the Lie group SO(3) and its Lie algebra

so(3) is given by the exponential and the logarithm map. In the following, �rst the linearization of

SO(3) is derived analytically which leads to a valid basis for the Lie algebra so(3). Then, a proof

for the exponential and logarithmic map is given.

A well known parameterization of a rotation matrix is given by the Euler angles {ω, ϕ, κ} (in the



140 Appendices

order Xω → Yϕ → Zκ):

R =


cosϕ cosκ − cosϕ sinκ sinϕ

sinω sinϕ cosκ+ cosω sinκ − sinω sinϕ sinκ+ cosω cosκ − sinω cosϕ

− cosω sinϕ cosκ+ sinω sinκ cosω sinϕ sinκ+ sinω cosκ cosω cosϕ

 (C.1)

For the linearization, the partial derivatives of (C.1) are needed.

∂R

∂ω
=


0 0 0

cosω sinϕ cosκ− sinω sinκ − cosω sinϕ sinκ− sinω cosκ − cosω cosϕ

sinω sinϕ cosκ+ cosω sinκ − sinω sinϕ sinκ+ cosω cosκ − sinω cosϕ

 , (C.2)

∂R

∂ϕ
=


− cosκ sinϕ sinϕ sinκ cosϕ

sinω cosϕ cosκ − sinω cosϕ sinκ sinω sinϕ

− cosω cosϕ cosκ cosω cosϕ sinκ − cosω sinϕ

 , (C.3)

∂R

∂κ
=


− sinκ cosϕ − cosϕ cosκ 0

− sinω sinϕ sinκ+ cosω cosκ − sinω sinϕ cosκ− cosω sinκ 0

cosω sinϕ sinκ+ sinω cosκ cosω sinϕ cosκ− sinω sinκ 0

 . (C.4)

A linearization at the identity, (ω, ϕ, κ) = (0, 0, 0), reveals the 3× 3 basis vectors in the Lie algebra:

Lω =
∂R

∂ω

∣∣∣∣
(ω,ϕ,κ)=(0,0,0)

=


0 0 0

0 0 −1

0 1 0

 , (C.5)

Lϕ =
∂R

∂ϕ

∣∣∣∣
(ω,ϕ,κ)=(0,0,0)

=


0 0 1

0 0 0

−1 0 0

 , (C.6)

Lκ =
∂R

∂κ

∣∣∣∣
(ω,ϕ,κ)=(0,0,0)

=


0 −1 0

1 0 0

0 0 0

 . (C.7)

Using the Lie bracket [A,B] = AB − BA, a commutator associated to every Lie algebra, one can

see the relation to the basis vectors in R3 under the cross product:

[Lω,Lϕ] = Lκ, [Lκ,Lω] = Lϕ, [Lϕ,Lκ] = Lω. (C.8)

From the three basis vectors (Lω,Lϕ,Lκ) every element in the Lie algebra can be constructed by a
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linear combination with an Euler vector r (i.e. the axis-angle representation, see Section 2.1.3):

r ∗ L = rxLω + ryLϕ + rzLκ =


0 −rz ry

rz 0 −rx
−ry rx 0

 ∈ so(3). (C.9)

C.1. Proof of the exponential map

The exponential map exp (·) : so(3) → SO(3) is given in Equation (2.9) in Section 2.1.3. In the

following, this mapping is proven.

Proof. In order to prove Equation (2.9), let us assume that some point Pk in R3 is rotated by a

rotation R, rPk = RPk. The rotated point rPk will lie in a plane perpendicular to the rotation axis

r̄. This plane is described by two basis vectors v1 and v2. v1 is de�ned to be orthogonal to the plane

of r̄ and Pk, thus v1 = [r̄]×Pk, whereas v2 is orthogonal to r̄ and v1, v2 = [v1]× r̄. Regarding the

o�set of the plane to the origin of the coordinate system, the track of rPk in space can be described

by:

rPk = Pk − v2 + sin(α)v1 + cos(α)v2

= Pk + sin(α)v1 + (cos(α)− 1)v2 (C.10)

Applying the basis vectors leads to

rPk = Pk + sin(α) [r̄]×Pk + (cos(α)− 1)
[
[r̄]×Pk

]
× r̄

= Pk + sin(α) [r̄]×Pk + (1− cos(α)) [r̄]× [r̄]×Pk

=
(
I3×3 + sin(α) [r̄]× + (1− cos(α)) [r̄]2×

)
Pk (C.11)

Now, the left term on the right side of Equation (C.11) can be substituted with the rotation matrix

R which leads to Equation (2.9) and �nishes the proof.

C.2. Proof of the logarithm map

The logarithm map log (·) : SO(3) → so(3) is given in Equation (2.10) in Section 2.1.3. The proof

of this map a�liates to the proof of the exponential map and is presented in the following.

Proof. Let us start from the equation of the exponential map (see Equation (2.9)). The squared
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skew-symmetric matrix [r̄]2× can be simpli�ed:

[r̄]2× =


−r̄y2 − r̄z

2 r̄xr̄y r̄xr̄z

r̄xr̄y −r̄x2 − r̄z
2 r̄y r̄z

r̄xr̄z r̄y r̄z −r̄x2 − r̄y
2

 =


r̄xr̄x − 1 r̄xr̄y r̄xr̄z

r̄xr̄y r̄y r̄y − 1 r̄y r̄z

r̄xr̄z r̄y r̄z r̄z r̄z − 1

 (C.12)

Hence Equation (2.9) can be written as

R = cos(α)I3×3 + sin(α) [r̄]× + (1− cos(α))
(
[r̄]

2
× + I3×3

)
(C.13)

=


cos(α) 0 0

0 cos(α) 0

0 0 cos(α)

+ sin(α)


0 −r̄z r̄y

r̄z 0 −r̄x
−r̄y r̄x 0

+ (1− cos(α))


r̄xr̄x r̄xr̄y r̄xr̄z

r̄xr̄y r̄y r̄y r̄y r̄z

r̄xr̄z r̄y r̄z r̄z r̄z



=


cos(α) + r̄xr̄x(1− cos(α)) − sin(α)r̄z + r̄xr̄y(1− cos(α)) sin(α)r̄y + r̄xr̄z(1− cos(α))

sin(α)r̄z + r̄xr̄y(1− cos(α)) cos(α) + r̄y r̄y(1− cos(α)) − sin(α)r̄x + r̄y r̄z(1− cos(α))

− sin(α)r̄y + r̄xr̄z(1− cos(α)) sin(α)r̄x + r̄y r̄z(1− cos(α)) cos(α) + r̄z r̄z(1− cos(α))


(C.14)

Regarding the symmetry in the second terms of the o�-diagonal elements, the matrix W from

Equation (2.9) can now be written as:

W =
R−RT

2
=


0 − sin(α)r̄z sin(α)r̄y

sin(α)r̄z 0 − sin(α)r̄x

− sin(α)r̄y sin(α)r̄x 0

 (C.15)

Regarding �rst that the matrix 2-norm is equal to the maximum eigenvalue and second that every

3 × 3 skew-symmetric matrix comes with a pair of equivalent eigenvalues and a zero-eigenvalue, it

can be shown that ‖W‖2 = ‖ [W32,W13,W21] ‖2 = sin(α) (which is equivalent to the vector-norm of

the elements of the upper or lower triangular part of W). From this, Equation (2.9) follows directly

for the case R 6= I3×3.

C.3. Logarithm map for α = π

In case the angle of rotation is equal to π, the logarithm map as de�ned in Equation (2.10) is not

determined because it involves a division by 0. The matrix W = 03×3 can neither be used to

determine the angle nor the axis. However, the angle can be computed from α = arccos
(
tr(R)−1

2

)
(see proof in C.4). For α = π the exponential map (Equation (2.9)) reduces to:

R = I3×3 + 2 [r̄]2× (C.16)
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From this, using (C.12), one can derive [r̄]2× = r̄⊗ r̄− I3×3 and thus (C.16) changes to:

R = I3×3 + 2 (r̄⊗ r̄− I3×3) = 2r̄⊗ r̄− I3×3 (C.17)

r̄⊗ r̄ = 1/2 (R+ I3×3) . (C.18)

The elements of r̄ can be derived taking the square root of the main diagonal elements. The sign

ambiguity of the square root can be solved considering the signs of the o�-diagonal entries (up to

an overall scale because r = −r⇔ ‖r‖ = π).

C.4. Proof for α = arccos
(

tr(R)−1
2

)
In Section C.3, the computation of the axis-angle representation from a rotation matrix with rotation

angle α = π is presented. In the following, it is shown that the angle α = arccos
(
tr(R)−1

2

)
is

equivalent to the representation used in the logarithm map α = arcsin ‖W‖2.

Proof.

arccos

(
tr (R)− 1

2

)
= arcsin

∥∥∥∥R−RT

2

∥∥∥∥
2

(C.19)

⇔ 2 sin

(
arccos

(
tr (R)− 1

2

))
=

∥∥R−RT
∥∥
2

⇔ 2 sin

(
arccos

(
R11 +R22 +R33 − 1

2

))
=

∥∥∥∥∥∥∥∥


0 R12 −R21 R13 −R31

R21 −R12 0 R23 −R32

R31 −R13 R32 −R23 0


∥∥∥∥∥∥∥∥
2

.

Using the fact that the matrix 2-norm is equal to the vectorial 2-norm of the o�-diagonal elements

it continues:(
2 sin

(
arccos

R11 +R22 +R33 − 1

2

))2

= (R32 −R23)
2 + (R13 −R31)

2 + (R21 −R12)
2

⇔ 4− 4 (R11/2 +R22/2 +R33/2− 1/2)2 − (R32 −R23)
2 − (R13 −R31)

2 − (R21 −R12)
2 = 0

⇔ R2
11 +R2

12 +R2
13 +R2

21 +R2
22 +R2

23 +R2
31 +R2

32 +R2
33 + . . . (C.20)

2 (R11R22 +R11R33 +R22R33 −R12R21 −R13R31 −R23R32)− . . . (C.21)

2 (R11 +R22 +R33) . . . (C.22)

= 3.

Equation (C.20) is the squared Frobenius norm of R, ‖R‖2F = 3. Thus, (C.21) and (C.22) must be

equal. Ignoring the constant factor, (C.22) is just the trace of R. Using the orthogonality of R (i.e.

the three columns [R1,R2,R3] form a basis) (C.21) can be reformulated as the trace of R exploiting
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the vector cross product:

R11R22 −R12R21 = R33, R11R33 −R13R31 = R22, R22R33 −R23R32 = R11. (C.23)

This ends the proof.

D. Computation of a quaternion from a rotation matrix

The computation of a quaternion from a given rotation matrix is an important step for two reasons.

Firstly, calculus with quaternions instead of rotation matrices is often more e�cient and, secondly,

the mapping between the manifold and the Lie algebra is easier. The algorithm proposed here is

not closed analytical as the inversion given in Equation (2.11) and involves two steps. The �rst one

comprises the estimation of the absolute values of the quaternion using the fact, that the norm of

the quaternion is equal to one. Starting from Equation (2.11) the rotation matrix can be written in

terms of the quaternion elements:

R =


1− 2(v2y + v2z) 2(vxvy − vzs) 2(vxvz + vys)

2(vxvy + vzs) 1− 2(v2x + v2z) 2(vyvz − vxs)

2(vxvz − vys) 2(vyvz + vxs) 1− 2(v2x + v2y)

 . (D.1)

Now, the absolute value for each element in q is retrieved via permutation of the main diagonal

entries of (D.1):

s =

√
1 +R11 +R22 +R33

2
=

√
4− 4v2x − 4v2y − 4v2z

2
(D.2)

vx =

√
1 +R11 −R22 −R33

2
=

√
4v2x
2

(D.3)

vy =

√
1−R11 +R22 −R33

2
=

√
4v2y

2
(D.4)

vz =

√
1−R11 −R22 +R33

2
=

√
4v2z
2

. (D.5)

Note that for a rotation by π, the term inside the square root of Equation (D.2) is equal to zero. In

case of rounding issues, the square root might have an imaginary solution, which have to be taken

care of.

Due to the sign ambiguity of the square root (i.e. the result of Equations (D.2)-(D.5) can either

be positive or negative), a subsequent step is necessary. Because q and −q both represent the same

rotation, it is possible to �x one element and determine the signs of the remaining elements with

respect to that one. Without loss of generality the largest value max ([s, vx, vy, vz]) is selected as

is proposed in Horn [1990]. Let us assume s = max ([s, vx, vy, vz]), then the signs of the remaining
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1

2
4

3

5
6

Figure E.1.: Example graph for the Floyd-Warshall algorithm.

elements are retrieved as:

vx =
R32 −R23

4s
=

2(vyvz + vxs)− 2(vyvz − vxs)

4s
(D.6)

vy =
R13 −R31

4s
=

2(vxvz + vys)− 2(vxvz − vys)

4s
(D.7)

vz =
R21 −R12

4s
=

2(vxvy + vzs)− 2(vxvy − vzs)

4s
. (D.8)

This works likewise in case a di�erent element is �xed. In summary, this also shows that the mapping

from the rotation matrix to a quaternion is a one-to-two mapping (whereas the inverse mapping is

one-to-one).

E. Starting vertex selection using the Floyd-Warshall algorithm

The starting vertex for the breadth-propagation algorithm is the vertex with the minimum distance

to all other vertices. It is easily found in the distance matrix D that can be derived from the

adjacency matrix A using the Floyd-Warshall algorithm which is given in pseudo-code in algorithm

2. In the following, this algorithm is explained based on a small example.

Algorithm 2 Floyd-Warshall algorithm

1: initialization: Adjacency matrix A, distance matrix D0 =∞n×n, iterator k = 1
2: set A′0 = A
3: while D contains ∞ do

4: {r, c} ← {A′ > 0 ∩D =∞}
5: Dk

r,c ← k

6: A′k = A′k−1A
7: k = k + 1

Consider the example of a graph shown in Figure E.1. The symmetric adjacency matrix looks
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d1 V1 V2 V3 V4 V5 V6
V1 ∞ 1 1 1 ∞ ∞
V2 1 ∞ ∞ ∞ ∞ ∞
V3 1 ∞ ∞ 1 1 1
V4 1 ∞ 1 ∞ ∞ ∞
V5 ∞ ∞ 1 ∞ ∞ ∞
V6 ∞ ∞ 1 ∞ ∞ ∞

(a) D1

d2 V1 V2 V3 V4 V5 V6
V1 2 1 1 1 2 2
V2 1 2 2 2 ∞ ∞
V3 1 2 2 1 1 1
V4 1 2 1 2 2 2
V5 2 ∞ 1 2 2 2
V6 2 ∞ 1 2 2 2

(b) D2

d3 V1 V2 V3 V4 V5 V6
V1 2 1 1 1 2 2
V2 1 2 2 2 3 3
V3 1 2 2 1 1 1
V4 1 2 1 2 2 2
V5 2 3 1 2 2 2
V6 2 3 1 2 2 2

(c) D3

Table E.1.: Distance matrix D after �rst (E.1a), second (E.1b) and third iteration (E.1a).

like:

A =



0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 1 1

1 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0


. (E.1)

Then the distance matrix D is updated in every iteration. All the instances of D are shown in table

E.1. In the �rst iteration, all indices that are nonzero in A are set to 1 in D. After three iterations,

the whole distance matrix D is computed. The matrices A′ look like:

A′1 = A′A =



3 0 1 1 1 1

0 1 1 1 0 0

1 1 4 1 0 0

1 1 1 2 1 1

1 0 0 1 1 1

1 0 0 1 1 1


A′2 = A′1A =



2 3 6 4 1 1

3 0 1 1 1 1

6 1 2 5 4 4

4 1 5 2 1 1

1 1 4 1 0 0

1 1 4 1 0 0


. (E.2)

Now, the rows or columns with the smallest maximal distance build the solution space to the

optimization problem (4.8) in Section 4.2.2. Thus, {V1,V3,V4} all have a maximum distance of 2.

For this example V3 is taken as starting vertex because it has the maximum degree |V3| = 4.



F. Solving a linear homogeneous system of equations with SVD 147

F. Solving a linear homogeneous system of equations with SVD

The least-squares solution of a system of linear homogeneous equations like Ct = 0 + v with

residual-vector v is found with a SVD. An optimization problem like this has to be solved for

instance for the estimation of global translations, as de�ned in (4.49) in Section 4.4. This problem

includes the constraint ‖t‖ = 1 ⇔ tT t = 1. In order to show that a least-squares-optimal solution

is found through a SVD, the decomposition is plugged into the least-squares objective function:

minimize vTv:

vTv = tTCCt (F.1)

⇔ = tTVSTUTUSVT t (F.2)

⇔ = tTVSTSVT t, becauseUTU = I. (F.3)

Now, it is substituted z = VT t and (F.3) reduces to:

vTv = zTSTSz. (F.4)

Applying the substitution to the constraint tT t = 1 leads to:

tT t = zTVVT z = zT z, becauseVVT = I. (F.5)

Thus the problem can be written as:

minimize
z

zTSTSz (F.6)

subject to zT z = 1 .

Because S is a diagonal matrix with singular values of C in decreasing order on the main diagonal,

the optimal solution of problem (F.6) is given as z? = [0, 0, . . . , 1]T . Redoing the substitution, the

optimal solution for t is t? = Vz, thus the rightmost column of V.

One has to take care of the rank defect of matrix C. The desired solution in case of a rank defect

of k would be the n− kth column of V.
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Index

SO(3), 28

so(3), 29

τc, 65

τr, 82

τs, 84

τ∆r, 74

τα, 64

τc{tij ,Rij}
, 59

τ|p|, 57

absolute orientation, 22

algebraic group, 27

angular distance, 27

axis-angle representation, 25, 73

Baker-Campbell-Hausdor� formula, 73

branch and bound, 31

breadth-�rst-search, 62

calibration matrix, 22

Cayley transform, 139

central path, 37

cheirality constraint, 24

chordal distance, 26

collinearity equations, 22

complementary slackness, 36

constraint function, 30

convex calculus, 33

convex function, 32

convex hull, 33, 70

convex optimization problem, 31

convex relaxation, 33

convex set, 32

coplanarity constraint, 23, 57

dependent-images parameterization, 23

distance matrix, 63

dual problem, 36

duality gap, 36

epipolar plane, 23

essential matrix, 24

Euler angles, 25

exponential map, 25, 29

exterior orientation, 21

feasible set, 30

Floyd-Warshall algorithm, 63

focal length, 21

Frobenius norm, 26

Gauss-Helmert model, 57

Gauss-Markov model, 73

global optimum, 31

global orientation, 22

Gramian matrix, 68, 139

homogeneous coordinates, 22

homologous points, 57

image, 21

image observation, 22

injective mapping, 25

interior orientation, 21

interior point method, 35
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KKT conditions, 36

Lagrangian dual function, 35

Lie algebra, 28

Lie bracket, 28, 73

Lie group, 27

linear matrix inequality, 34, 71

linear program, 34

local optimum, 31

log-barrier function, 37

logarithm map, 26, 29, 73

M-estimation of relative orientation, 57

manifold, 28

matrix completion, 69

minimum spanning tree (MST), 61

normalized observation, 23

object point, 22

objective function, 31

optimization problem, 30

orthogonal group, 28, 69

orthonormal matrix, 24

point track, 79

primal problem, 35

principal point, 21

quadratic program, 34

quaternion, 26

quaternion distance, 27

relative orientation, 23

relative rotation, 23

relative translation, 23

rotation, 22

semide�nite program, 34

single image geometry, 22

singular value decomposition (SVD), 35, 86

spatial intersection, 76

special orthogonal group, 28

starting vertex, 62

surjective mapping, 25

tangent space, 28

translation, 22

two-view geometry, 22

view-graph, 61
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